Cargando…
Hierarchical Anatomical Brain Networks for MCI Prediction: Revisiting Volumetric Measures
Owning to its clinical accessibility, T1-weighted MRI (Magnetic Resonance Imaging) has been extensively studied in the past decades for prediction of Alzheimer's disease (AD) and mild cognitive impairment (MCI). The volumes of gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF) ar...
Autores principales: | Zhou, Luping, Wang, Yaping, Li, Yang, Yap, Pew-Thian, Shen, Dinggang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3139571/ https://www.ncbi.nlm.nih.gov/pubmed/21818280 http://dx.doi.org/10.1371/journal.pone.0021935 |
Ejemplares similares
-
Resting-State Multi-Spectrum Functional Connectivity Networks for Identification of MCI Patients
por: Wee, Chong-Yaw, et al.
Publicado: (2012) -
Hierarchical Nonlocal Residual Networks for Image Quality Assessment of Pediatric Diffusion MRI with Limited and Noisy Annotations
por: Liu, Siyuan, et al.
Publicado: (2020) -
Meta-Network Analysis of Structural Correlation Networks Provides Insights Into Brain Network Development
por: Xu, Xiaohua, et al.
Publicado: (2019) -
eHUGS: Enhanced Hierarchical Unbiased Graph Shrinkage for Efficient Groupwise Registration
por: Wu, Guorong, et al.
Publicado: (2016) -
Spatiotemporal Analysis of Developing Brain Networks
por: He, Ping, et al.
Publicado: (2018)