Cargando…
Local Field Potential Modeling Predicts Dense Activation in Cerebellar Granule Cells Clusters under LTP and LTD Control
Local field-potentials (LFPs) are generated by neuronal ensembles and contain information about the activity of single neurons. Here, the LFPs of the cerebellar granular layer and their changes during long-term synaptic plasticity (LTP and LTD) were recorded in response to punctate facial stimulatio...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3139583/ https://www.ncbi.nlm.nih.gov/pubmed/21818278 http://dx.doi.org/10.1371/journal.pone.0021928 |
_version_ | 1782208472770674688 |
---|---|
author | Diwakar, Shyam Lombardo, Paola Solinas, Sergio Naldi, Giovanni D'Angelo, Egidio |
author_facet | Diwakar, Shyam Lombardo, Paola Solinas, Sergio Naldi, Giovanni D'Angelo, Egidio |
author_sort | Diwakar, Shyam |
collection | PubMed |
description | Local field-potentials (LFPs) are generated by neuronal ensembles and contain information about the activity of single neurons. Here, the LFPs of the cerebellar granular layer and their changes during long-term synaptic plasticity (LTP and LTD) were recorded in response to punctate facial stimulation in the rat in vivo. The LFP comprised a trigeminal (T) and a cortical (C) wave. T and C, which derived from independent granule cell clusters, co-varied during LTP and LTD. To extract information about the underlying cellular activities, the LFP was reconstructed using a repetitive convolution (ReConv) of the extracellular potential generated by a detailed multicompartmental model of the granule cell. The mossy fiber input patterns were determined using a Blind Source Separation (BSS) algorithm. The major component of the LFP was generated by the granule cell spike Na(+) current, which caused a powerful sink in the axon initial segment with the source located in the soma and dendrites. Reproducing the LFP changes observed during LTP and LTD required modifications in both release probability and intrinsic excitability at the mossy fiber-granule cells relay. Synaptic plasticity and Golgi cell feed-forward inhibition proved critical for controlling the percentage of active granule cells, which was 11% in standard conditions but ranged from 3% during LTD to 21% during LTP and raised over 50% when inhibition was reduced. The emerging picture is that of independent (but neighboring) trigeminal and cortical channels, in which synaptic plasticity and feed-forward inhibition effectively regulate the number of discharging granule cells and emitted spikes generating “dense” activity clusters in the cerebellar granular layer. |
format | Online Article Text |
id | pubmed-3139583 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-31395832011-08-04 Local Field Potential Modeling Predicts Dense Activation in Cerebellar Granule Cells Clusters under LTP and LTD Control Diwakar, Shyam Lombardo, Paola Solinas, Sergio Naldi, Giovanni D'Angelo, Egidio PLoS One Research Article Local field-potentials (LFPs) are generated by neuronal ensembles and contain information about the activity of single neurons. Here, the LFPs of the cerebellar granular layer and their changes during long-term synaptic plasticity (LTP and LTD) were recorded in response to punctate facial stimulation in the rat in vivo. The LFP comprised a trigeminal (T) and a cortical (C) wave. T and C, which derived from independent granule cell clusters, co-varied during LTP and LTD. To extract information about the underlying cellular activities, the LFP was reconstructed using a repetitive convolution (ReConv) of the extracellular potential generated by a detailed multicompartmental model of the granule cell. The mossy fiber input patterns were determined using a Blind Source Separation (BSS) algorithm. The major component of the LFP was generated by the granule cell spike Na(+) current, which caused a powerful sink in the axon initial segment with the source located in the soma and dendrites. Reproducing the LFP changes observed during LTP and LTD required modifications in both release probability and intrinsic excitability at the mossy fiber-granule cells relay. Synaptic plasticity and Golgi cell feed-forward inhibition proved critical for controlling the percentage of active granule cells, which was 11% in standard conditions but ranged from 3% during LTD to 21% during LTP and raised over 50% when inhibition was reduced. The emerging picture is that of independent (but neighboring) trigeminal and cortical channels, in which synaptic plasticity and feed-forward inhibition effectively regulate the number of discharging granule cells and emitted spikes generating “dense” activity clusters in the cerebellar granular layer. Public Library of Science 2011-07-19 /pmc/articles/PMC3139583/ /pubmed/21818278 http://dx.doi.org/10.1371/journal.pone.0021928 Text en Diwakar et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Diwakar, Shyam Lombardo, Paola Solinas, Sergio Naldi, Giovanni D'Angelo, Egidio Local Field Potential Modeling Predicts Dense Activation in Cerebellar Granule Cells Clusters under LTP and LTD Control |
title | Local Field Potential Modeling Predicts Dense Activation in Cerebellar Granule Cells Clusters under LTP and LTD Control |
title_full | Local Field Potential Modeling Predicts Dense Activation in Cerebellar Granule Cells Clusters under LTP and LTD Control |
title_fullStr | Local Field Potential Modeling Predicts Dense Activation in Cerebellar Granule Cells Clusters under LTP and LTD Control |
title_full_unstemmed | Local Field Potential Modeling Predicts Dense Activation in Cerebellar Granule Cells Clusters under LTP and LTD Control |
title_short | Local Field Potential Modeling Predicts Dense Activation in Cerebellar Granule Cells Clusters under LTP and LTD Control |
title_sort | local field potential modeling predicts dense activation in cerebellar granule cells clusters under ltp and ltd control |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3139583/ https://www.ncbi.nlm.nih.gov/pubmed/21818278 http://dx.doi.org/10.1371/journal.pone.0021928 |
work_keys_str_mv | AT diwakarshyam localfieldpotentialmodelingpredictsdenseactivationincerebellargranulecellsclustersunderltpandltdcontrol AT lombardopaola localfieldpotentialmodelingpredictsdenseactivationincerebellargranulecellsclustersunderltpandltdcontrol AT solinassergio localfieldpotentialmodelingpredictsdenseactivationincerebellargranulecellsclustersunderltpandltdcontrol AT naldigiovanni localfieldpotentialmodelingpredictsdenseactivationincerebellargranulecellsclustersunderltpandltdcontrol AT dangeloegidio localfieldpotentialmodelingpredictsdenseactivationincerebellargranulecellsclustersunderltpandltdcontrol |