Cargando…

Information Dynamics in Living Systems: Prokaryotes, Eukaryotes, and Cancer

BACKGROUND: Living systems use information and energy to maintain stable entropy while far from thermodynamic equilibrium. The underlying first principles have not been established. FINDINGS: We propose that stable entropy in living systems, in the absence of thermodynamic equilibrium, requires an i...

Descripción completa

Detalles Bibliográficos
Autores principales: Frieden, B. Roy, Gatenby, Robert A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3139603/
https://www.ncbi.nlm.nih.gov/pubmed/21818295
http://dx.doi.org/10.1371/journal.pone.0022085
_version_ 1782208476144992256
author Frieden, B. Roy
Gatenby, Robert A.
author_facet Frieden, B. Roy
Gatenby, Robert A.
author_sort Frieden, B. Roy
collection PubMed
description BACKGROUND: Living systems use information and energy to maintain stable entropy while far from thermodynamic equilibrium. The underlying first principles have not been established. FINDINGS: We propose that stable entropy in living systems, in the absence of thermodynamic equilibrium, requires an information extremum (maximum or minimum), which is invariant to first order perturbations. Proliferation and death represent key feedback mechanisms that promote stability even in a non-equilibrium state. A system moves to low or high information depending on its energy status, as the benefit of information in maintaining and increasing order is balanced against its energy cost. Prokaryotes, which lack specialized energy-producing organelles (mitochondria), are energy-limited and constrained to an information minimum. Acquisition of mitochondria is viewed as a critical evolutionary step that, by allowing eukaryotes to achieve a sufficiently high energy state, permitted a phase transition to an information maximum. This state, in contrast to the prokaryote minima, allowed evolution of complex, multicellular organisms. A special case is a malignant cell, which is modeled as a phase transition from a maximum to minimum information state. The minimum leads to a predicted power-law governing the in situ growth that is confirmed by studies measuring growth of small breast cancers. CONCLUSIONS: We find living systems achieve a stable entropic state by maintaining an extreme level of information. The evolutionary divergence of prokaryotes and eukaryotes resulted from acquisition of specialized energy organelles that allowed transition from information minima to maxima, respectively. Carcinogenesis represents a reverse transition: of an information maximum to minimum. The progressive information loss is evident in accumulating mutations, disordered morphology, and functional decline characteristics of human cancers. The findings suggest energy restriction is a critical first step that triggers the genetic mutations that drive somatic evolution of the malignant phenotype.
format Online
Article
Text
id pubmed-3139603
institution National Center for Biotechnology Information
language English
publishDate 2011
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-31396032011-08-04 Information Dynamics in Living Systems: Prokaryotes, Eukaryotes, and Cancer Frieden, B. Roy Gatenby, Robert A. PLoS One Research Article BACKGROUND: Living systems use information and energy to maintain stable entropy while far from thermodynamic equilibrium. The underlying first principles have not been established. FINDINGS: We propose that stable entropy in living systems, in the absence of thermodynamic equilibrium, requires an information extremum (maximum or minimum), which is invariant to first order perturbations. Proliferation and death represent key feedback mechanisms that promote stability even in a non-equilibrium state. A system moves to low or high information depending on its energy status, as the benefit of information in maintaining and increasing order is balanced against its energy cost. Prokaryotes, which lack specialized energy-producing organelles (mitochondria), are energy-limited and constrained to an information minimum. Acquisition of mitochondria is viewed as a critical evolutionary step that, by allowing eukaryotes to achieve a sufficiently high energy state, permitted a phase transition to an information maximum. This state, in contrast to the prokaryote minima, allowed evolution of complex, multicellular organisms. A special case is a malignant cell, which is modeled as a phase transition from a maximum to minimum information state. The minimum leads to a predicted power-law governing the in situ growth that is confirmed by studies measuring growth of small breast cancers. CONCLUSIONS: We find living systems achieve a stable entropic state by maintaining an extreme level of information. The evolutionary divergence of prokaryotes and eukaryotes resulted from acquisition of specialized energy organelles that allowed transition from information minima to maxima, respectively. Carcinogenesis represents a reverse transition: of an information maximum to minimum. The progressive information loss is evident in accumulating mutations, disordered morphology, and functional decline characteristics of human cancers. The findings suggest energy restriction is a critical first step that triggers the genetic mutations that drive somatic evolution of the malignant phenotype. Public Library of Science 2011-07-19 /pmc/articles/PMC3139603/ /pubmed/21818295 http://dx.doi.org/10.1371/journal.pone.0022085 Text en Frieden and Gatenby. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Frieden, B. Roy
Gatenby, Robert A.
Information Dynamics in Living Systems: Prokaryotes, Eukaryotes, and Cancer
title Information Dynamics in Living Systems: Prokaryotes, Eukaryotes, and Cancer
title_full Information Dynamics in Living Systems: Prokaryotes, Eukaryotes, and Cancer
title_fullStr Information Dynamics in Living Systems: Prokaryotes, Eukaryotes, and Cancer
title_full_unstemmed Information Dynamics in Living Systems: Prokaryotes, Eukaryotes, and Cancer
title_short Information Dynamics in Living Systems: Prokaryotes, Eukaryotes, and Cancer
title_sort information dynamics in living systems: prokaryotes, eukaryotes, and cancer
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3139603/
https://www.ncbi.nlm.nih.gov/pubmed/21818295
http://dx.doi.org/10.1371/journal.pone.0022085
work_keys_str_mv AT friedenbroy informationdynamicsinlivingsystemsprokaryoteseukaryotesandcancer
AT gatenbyroberta informationdynamicsinlivingsystemsprokaryoteseukaryotesandcancer