Cargando…

Formulating multicellular models of metabolism in tissues: application to energy metabolism in the human brain

A workflow is presented that integrates gene expression data, proteomic data, and literature-based manual curation to construct multicellular, tissue-specific models of human brain energy metabolism that recapitulate metabolic interactions between astrocytes and various neuron types. Three analyses...

Descripción completa

Detalles Bibliográficos
Autores principales: Lewis, Nathan E., Schramm, Gunnar, Bordbar, Aarash, Schellenberger, Jan, Andersen, Michael Paul, Cheng, Jeffrey K., Patel, Nilam, Yee, Alex, Lewis, Randall A., Eils, Roland, König, Rainer, Palsson, Bernhard Ø.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3140076/
https://www.ncbi.nlm.nih.gov/pubmed/21102456
http://dx.doi.org/10.1038/nbt.1711
_version_ 1782208517211422720
author Lewis, Nathan E.
Schramm, Gunnar
Bordbar, Aarash
Schellenberger, Jan
Andersen, Michael Paul
Cheng, Jeffrey K.
Patel, Nilam
Yee, Alex
Lewis, Randall A.
Eils, Roland
König, Rainer
Palsson, Bernhard Ø.
author_facet Lewis, Nathan E.
Schramm, Gunnar
Bordbar, Aarash
Schellenberger, Jan
Andersen, Michael Paul
Cheng, Jeffrey K.
Patel, Nilam
Yee, Alex
Lewis, Randall A.
Eils, Roland
König, Rainer
Palsson, Bernhard Ø.
author_sort Lewis, Nathan E.
collection PubMed
description A workflow is presented that integrates gene expression data, proteomic data, and literature-based manual curation to construct multicellular, tissue-specific models of human brain energy metabolism that recapitulate metabolic interactions between astrocytes and various neuron types. Three analyses are applied for gene identification, analysis of omics data, and analysis of physiological states. First, we identify glutamate decarboxylase as a target that may contribute to cell-type and regional specificity in Alzheimer’s disease. Second, the decreased metabolic rate seen in affected brain regions in Alzheimer’s disease is consistent with a suppression of central metabolic gene expression in histopathologically normal neurons. Third, we identify pathways in cholinergic neurons that couple mitochondrial metabolism and cytosolic acetylcholine production, and subsequently find that cholinergic neurotransmission accounts for ∼3% of brain neurotransmission. Constraint-based modeling can thus contribute to the study and analysis of multicellular metabolic processes in human tissues, and provide detailed mechanistic insight into high-throughput data analysis.
format Online
Article
Text
id pubmed-3140076
institution National Center for Biotechnology Information
language English
publishDate 2010
record_format MEDLINE/PubMed
spelling pubmed-31400762011-07-20 Formulating multicellular models of metabolism in tissues: application to energy metabolism in the human brain Lewis, Nathan E. Schramm, Gunnar Bordbar, Aarash Schellenberger, Jan Andersen, Michael Paul Cheng, Jeffrey K. Patel, Nilam Yee, Alex Lewis, Randall A. Eils, Roland König, Rainer Palsson, Bernhard Ø. Nat Biotechnol Article A workflow is presented that integrates gene expression data, proteomic data, and literature-based manual curation to construct multicellular, tissue-specific models of human brain energy metabolism that recapitulate metabolic interactions between astrocytes and various neuron types. Three analyses are applied for gene identification, analysis of omics data, and analysis of physiological states. First, we identify glutamate decarboxylase as a target that may contribute to cell-type and regional specificity in Alzheimer’s disease. Second, the decreased metabolic rate seen in affected brain regions in Alzheimer’s disease is consistent with a suppression of central metabolic gene expression in histopathologically normal neurons. Third, we identify pathways in cholinergic neurons that couple mitochondrial metabolism and cytosolic acetylcholine production, and subsequently find that cholinergic neurotransmission accounts for ∼3% of brain neurotransmission. Constraint-based modeling can thus contribute to the study and analysis of multicellular metabolic processes in human tissues, and provide detailed mechanistic insight into high-throughput data analysis. 2010-11-21 2010-12 /pmc/articles/PMC3140076/ /pubmed/21102456 http://dx.doi.org/10.1038/nbt.1711 Text en Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms
spellingShingle Article
Lewis, Nathan E.
Schramm, Gunnar
Bordbar, Aarash
Schellenberger, Jan
Andersen, Michael Paul
Cheng, Jeffrey K.
Patel, Nilam
Yee, Alex
Lewis, Randall A.
Eils, Roland
König, Rainer
Palsson, Bernhard Ø.
Formulating multicellular models of metabolism in tissues: application to energy metabolism in the human brain
title Formulating multicellular models of metabolism in tissues: application to energy metabolism in the human brain
title_full Formulating multicellular models of metabolism in tissues: application to energy metabolism in the human brain
title_fullStr Formulating multicellular models of metabolism in tissues: application to energy metabolism in the human brain
title_full_unstemmed Formulating multicellular models of metabolism in tissues: application to energy metabolism in the human brain
title_short Formulating multicellular models of metabolism in tissues: application to energy metabolism in the human brain
title_sort formulating multicellular models of metabolism in tissues: application to energy metabolism in the human brain
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3140076/
https://www.ncbi.nlm.nih.gov/pubmed/21102456
http://dx.doi.org/10.1038/nbt.1711
work_keys_str_mv AT lewisnathane formulatingmulticellularmodelsofmetabolismintissuesapplicationtoenergymetabolisminthehumanbrain
AT schrammgunnar formulatingmulticellularmodelsofmetabolismintissuesapplicationtoenergymetabolisminthehumanbrain
AT bordbaraarash formulatingmulticellularmodelsofmetabolismintissuesapplicationtoenergymetabolisminthehumanbrain
AT schellenbergerjan formulatingmulticellularmodelsofmetabolismintissuesapplicationtoenergymetabolisminthehumanbrain
AT andersenmichaelpaul formulatingmulticellularmodelsofmetabolismintissuesapplicationtoenergymetabolisminthehumanbrain
AT chengjeffreyk formulatingmulticellularmodelsofmetabolismintissuesapplicationtoenergymetabolisminthehumanbrain
AT patelnilam formulatingmulticellularmodelsofmetabolismintissuesapplicationtoenergymetabolisminthehumanbrain
AT yeealex formulatingmulticellularmodelsofmetabolismintissuesapplicationtoenergymetabolisminthehumanbrain
AT lewisrandalla formulatingmulticellularmodelsofmetabolismintissuesapplicationtoenergymetabolisminthehumanbrain
AT eilsroland formulatingmulticellularmodelsofmetabolismintissuesapplicationtoenergymetabolisminthehumanbrain
AT konigrainer formulatingmulticellularmodelsofmetabolismintissuesapplicationtoenergymetabolisminthehumanbrain
AT palssonbernhardø formulatingmulticellularmodelsofmetabolismintissuesapplicationtoenergymetabolisminthehumanbrain