Cargando…
Fast, Scalable, Bayesian Spike Identification for Multi-Electrode Arrays
We present an algorithm to identify individual neural spikes observed on high-density multi-electrode arrays (MEAs). Our method can distinguish large numbers of distinct neural units, even when spikes overlap, and accounts for intrinsic variability of spikes from each unit. As MEAs grow larger, it i...
Autores principales: | Prentice, Jason S., Homann, Jan, Simmons, Kristina D., Tkačik, Gašper, Balasubramanian, Vijay, Nelson, Philip C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3140468/ https://www.ncbi.nlm.nih.gov/pubmed/21799725 http://dx.doi.org/10.1371/journal.pone.0019884 |
Ejemplares similares
-
Scalable, Bayesian, multi-electrode spike sorting
por: Prentice, Jason, et al.
Publicado: (2010) -
Transformation of Stimulus Correlations by the Retina
por: Simmons, Kristina D., et al.
Publicado: (2013) -
HTsort: Enabling Fast and Accurate Spike Sorting on Multi-Electrode Arrays
por: Chen, Keming, et al.
Publicado: (2021) -
Spike sorting for large, dense electrode arrays
por: Rossant, Cyrille, et al.
Publicado: (2016) -
Electrical stimulus artifact cancellation and neural spike detection on large multi-electrode arrays
por: Mena, Gonzalo E., et al.
Publicado: (2017)