Cargando…
Prospective Genomic Characterization of the German Enterohemorrhagic Escherichia coli O104:H4 Outbreak by Rapid Next Generation Sequencing Technology
An ongoing outbreak of exceptionally virulent Shiga toxin (Stx)-producing Escherichia coli O104:H4 centered in Germany, has caused over 830 cases of hemolytic uremic syndrome (HUS) and 46 deaths since May 2011. Serotype O104:H4, which has not been detected in animals, has rarely been associated with...
Autores principales: | , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3140518/ https://www.ncbi.nlm.nih.gov/pubmed/21799941 http://dx.doi.org/10.1371/journal.pone.0022751 |
_version_ | 1782208570473840640 |
---|---|
author | Mellmann, Alexander Harmsen, Dag Cummings, Craig A. Zentz, Emily B. Leopold, Shana R. Rico, Alain Prior, Karola Szczepanowski, Rafael Ji, Yongmei Zhang, Wenlan McLaughlin, Stephen F. Henkhaus, John K. Leopold, Benjamin Bielaszewska, Martina Prager, Rita Brzoska, Pius M. Moore, Richard L. Guenther, Simone Rothberg, Jonathan M. Karch, Helge |
author_facet | Mellmann, Alexander Harmsen, Dag Cummings, Craig A. Zentz, Emily B. Leopold, Shana R. Rico, Alain Prior, Karola Szczepanowski, Rafael Ji, Yongmei Zhang, Wenlan McLaughlin, Stephen F. Henkhaus, John K. Leopold, Benjamin Bielaszewska, Martina Prager, Rita Brzoska, Pius M. Moore, Richard L. Guenther, Simone Rothberg, Jonathan M. Karch, Helge |
author_sort | Mellmann, Alexander |
collection | PubMed |
description | An ongoing outbreak of exceptionally virulent Shiga toxin (Stx)-producing Escherichia coli O104:H4 centered in Germany, has caused over 830 cases of hemolytic uremic syndrome (HUS) and 46 deaths since May 2011. Serotype O104:H4, which has not been detected in animals, has rarely been associated with HUS in the past. To prospectively elucidate the unique characteristics of this strain in the early stages of this outbreak, we applied whole genome sequencing on the Life Technologies Ion Torrent PGM™ sequencer and Optical Mapping to characterize one outbreak isolate (LB226692) and a historic O104:H4 HUS isolate from 2001 (01-09591). Reference guided draft assemblies of both strains were completed with the newly introduced PGM™ within 62 hours. The HUS-associated strains both carried genes typically found in two types of pathogenic E. coli, enteroaggregative E. coli (EAEC) and enterohemorrhagic E. coli (EHEC). Phylogenetic analyses of 1,144 core E. coli genes indicate that the HUS-causing O104:H4 strains and the previously published sequence of the EAEC strain 55989 show a close relationship but are only distantly related to common EHEC serotypes. Though closely related, the outbreak strain differs from the 2001 strain in plasmid content and fimbrial genes. We propose a model in which EAEC 55989 and EHEC O104:H4 strains evolved from a common EHEC O104:H4 progenitor, and suggest that by stepwise gain and loss of chromosomal and plasmid-encoded virulence factors, a highly pathogenic hybrid of EAEC and EHEC emerged as the current outbreak clone. In conclusion, rapid next-generation technologies facilitated prospective whole genome characterization in the early stages of an outbreak. |
format | Online Article Text |
id | pubmed-3140518 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-31405182011-07-28 Prospective Genomic Characterization of the German Enterohemorrhagic Escherichia coli O104:H4 Outbreak by Rapid Next Generation Sequencing Technology Mellmann, Alexander Harmsen, Dag Cummings, Craig A. Zentz, Emily B. Leopold, Shana R. Rico, Alain Prior, Karola Szczepanowski, Rafael Ji, Yongmei Zhang, Wenlan McLaughlin, Stephen F. Henkhaus, John K. Leopold, Benjamin Bielaszewska, Martina Prager, Rita Brzoska, Pius M. Moore, Richard L. Guenther, Simone Rothberg, Jonathan M. Karch, Helge PLoS One Research Article An ongoing outbreak of exceptionally virulent Shiga toxin (Stx)-producing Escherichia coli O104:H4 centered in Germany, has caused over 830 cases of hemolytic uremic syndrome (HUS) and 46 deaths since May 2011. Serotype O104:H4, which has not been detected in animals, has rarely been associated with HUS in the past. To prospectively elucidate the unique characteristics of this strain in the early stages of this outbreak, we applied whole genome sequencing on the Life Technologies Ion Torrent PGM™ sequencer and Optical Mapping to characterize one outbreak isolate (LB226692) and a historic O104:H4 HUS isolate from 2001 (01-09591). Reference guided draft assemblies of both strains were completed with the newly introduced PGM™ within 62 hours. The HUS-associated strains both carried genes typically found in two types of pathogenic E. coli, enteroaggregative E. coli (EAEC) and enterohemorrhagic E. coli (EHEC). Phylogenetic analyses of 1,144 core E. coli genes indicate that the HUS-causing O104:H4 strains and the previously published sequence of the EAEC strain 55989 show a close relationship but are only distantly related to common EHEC serotypes. Though closely related, the outbreak strain differs from the 2001 strain in plasmid content and fimbrial genes. We propose a model in which EAEC 55989 and EHEC O104:H4 strains evolved from a common EHEC O104:H4 progenitor, and suggest that by stepwise gain and loss of chromosomal and plasmid-encoded virulence factors, a highly pathogenic hybrid of EAEC and EHEC emerged as the current outbreak clone. In conclusion, rapid next-generation technologies facilitated prospective whole genome characterization in the early stages of an outbreak. Public Library of Science 2011-07-20 /pmc/articles/PMC3140518/ /pubmed/21799941 http://dx.doi.org/10.1371/journal.pone.0022751 Text en Mellmann et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Mellmann, Alexander Harmsen, Dag Cummings, Craig A. Zentz, Emily B. Leopold, Shana R. Rico, Alain Prior, Karola Szczepanowski, Rafael Ji, Yongmei Zhang, Wenlan McLaughlin, Stephen F. Henkhaus, John K. Leopold, Benjamin Bielaszewska, Martina Prager, Rita Brzoska, Pius M. Moore, Richard L. Guenther, Simone Rothberg, Jonathan M. Karch, Helge Prospective Genomic Characterization of the German Enterohemorrhagic Escherichia coli O104:H4 Outbreak by Rapid Next Generation Sequencing Technology |
title | Prospective Genomic Characterization of the German Enterohemorrhagic Escherichia coli O104:H4 Outbreak by Rapid Next Generation Sequencing Technology |
title_full | Prospective Genomic Characterization of the German Enterohemorrhagic Escherichia coli O104:H4 Outbreak by Rapid Next Generation Sequencing Technology |
title_fullStr | Prospective Genomic Characterization of the German Enterohemorrhagic Escherichia coli O104:H4 Outbreak by Rapid Next Generation Sequencing Technology |
title_full_unstemmed | Prospective Genomic Characterization of the German Enterohemorrhagic Escherichia coli O104:H4 Outbreak by Rapid Next Generation Sequencing Technology |
title_short | Prospective Genomic Characterization of the German Enterohemorrhagic Escherichia coli O104:H4 Outbreak by Rapid Next Generation Sequencing Technology |
title_sort | prospective genomic characterization of the german enterohemorrhagic escherichia coli o104:h4 outbreak by rapid next generation sequencing technology |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3140518/ https://www.ncbi.nlm.nih.gov/pubmed/21799941 http://dx.doi.org/10.1371/journal.pone.0022751 |
work_keys_str_mv | AT mellmannalexander prospectivegenomiccharacterizationofthegermanenterohemorrhagicescherichiacolio104h4outbreakbyrapidnextgenerationsequencingtechnology AT harmsendag prospectivegenomiccharacterizationofthegermanenterohemorrhagicescherichiacolio104h4outbreakbyrapidnextgenerationsequencingtechnology AT cummingscraiga prospectivegenomiccharacterizationofthegermanenterohemorrhagicescherichiacolio104h4outbreakbyrapidnextgenerationsequencingtechnology AT zentzemilyb prospectivegenomiccharacterizationofthegermanenterohemorrhagicescherichiacolio104h4outbreakbyrapidnextgenerationsequencingtechnology AT leopoldshanar prospectivegenomiccharacterizationofthegermanenterohemorrhagicescherichiacolio104h4outbreakbyrapidnextgenerationsequencingtechnology AT ricoalain prospectivegenomiccharacterizationofthegermanenterohemorrhagicescherichiacolio104h4outbreakbyrapidnextgenerationsequencingtechnology AT priorkarola prospectivegenomiccharacterizationofthegermanenterohemorrhagicescherichiacolio104h4outbreakbyrapidnextgenerationsequencingtechnology AT szczepanowskirafael prospectivegenomiccharacterizationofthegermanenterohemorrhagicescherichiacolio104h4outbreakbyrapidnextgenerationsequencingtechnology AT jiyongmei prospectivegenomiccharacterizationofthegermanenterohemorrhagicescherichiacolio104h4outbreakbyrapidnextgenerationsequencingtechnology AT zhangwenlan prospectivegenomiccharacterizationofthegermanenterohemorrhagicescherichiacolio104h4outbreakbyrapidnextgenerationsequencingtechnology AT mclaughlinstephenf prospectivegenomiccharacterizationofthegermanenterohemorrhagicescherichiacolio104h4outbreakbyrapidnextgenerationsequencingtechnology AT henkhausjohnk prospectivegenomiccharacterizationofthegermanenterohemorrhagicescherichiacolio104h4outbreakbyrapidnextgenerationsequencingtechnology AT leopoldbenjamin prospectivegenomiccharacterizationofthegermanenterohemorrhagicescherichiacolio104h4outbreakbyrapidnextgenerationsequencingtechnology AT bielaszewskamartina prospectivegenomiccharacterizationofthegermanenterohemorrhagicescherichiacolio104h4outbreakbyrapidnextgenerationsequencingtechnology AT pragerrita prospectivegenomiccharacterizationofthegermanenterohemorrhagicescherichiacolio104h4outbreakbyrapidnextgenerationsequencingtechnology AT brzoskapiusm prospectivegenomiccharacterizationofthegermanenterohemorrhagicescherichiacolio104h4outbreakbyrapidnextgenerationsequencingtechnology AT moorerichardl prospectivegenomiccharacterizationofthegermanenterohemorrhagicescherichiacolio104h4outbreakbyrapidnextgenerationsequencingtechnology AT guenthersimone prospectivegenomiccharacterizationofthegermanenterohemorrhagicescherichiacolio104h4outbreakbyrapidnextgenerationsequencingtechnology AT rothbergjonathanm prospectivegenomiccharacterizationofthegermanenterohemorrhagicescherichiacolio104h4outbreakbyrapidnextgenerationsequencingtechnology AT karchhelge prospectivegenomiccharacterizationofthegermanenterohemorrhagicescherichiacolio104h4outbreakbyrapidnextgenerationsequencingtechnology |