Cargando…
RNA binding properties of conserved protein subunits of human RNase P
Human nuclear RNase P is required for transcription and processing of tRNA. This catalytic RNP has an H1 RNA moiety associated with ten distinct protein subunits. Five (Rpp20, Rpp21, Rpp25, Rpp29 and Pop5) out of eight of these protein subunits, prepared in refolded recombinant forms, bind to H1 RNA...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3141246/ https://www.ncbi.nlm.nih.gov/pubmed/21450806 http://dx.doi.org/10.1093/nar/gkr126 |
_version_ | 1782208645717557248 |
---|---|
author | Reiner, Robert Alfiya-Mor, Noa Berrebi-Demma, Mishka Wesolowski, Donna Altman, Sidney Jarrous, Nayef |
author_facet | Reiner, Robert Alfiya-Mor, Noa Berrebi-Demma, Mishka Wesolowski, Donna Altman, Sidney Jarrous, Nayef |
author_sort | Reiner, Robert |
collection | PubMed |
description | Human nuclear RNase P is required for transcription and processing of tRNA. This catalytic RNP has an H1 RNA moiety associated with ten distinct protein subunits. Five (Rpp20, Rpp21, Rpp25, Rpp29 and Pop5) out of eight of these protein subunits, prepared in refolded recombinant forms, bind to H1 RNA in vitro. Rpp20 and Rpp25 bind jointly to H1 RNA, even though each protein can interact independently with this transcript. Nuclease footprinting analysis reveals that Rpp20 and Rpp25 recognize overlapping regions in the P2 and P3 domains of H1 RNA. Rpp21 and Rpp29, which are sufficient for reconstitution of the endonucleolytic activity, bind to separate regions in the catalytic domain of H1 RNA. Common themes and discrepancies in the RNA-protein interactions between human nuclear RNase P and its related yeast and archaeal counterparts provide a rationale for the assembly of the fully active form of this enzyme. |
format | Online Article Text |
id | pubmed-3141246 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-31412462011-07-22 RNA binding properties of conserved protein subunits of human RNase P Reiner, Robert Alfiya-Mor, Noa Berrebi-Demma, Mishka Wesolowski, Donna Altman, Sidney Jarrous, Nayef Nucleic Acids Res RNA Human nuclear RNase P is required for transcription and processing of tRNA. This catalytic RNP has an H1 RNA moiety associated with ten distinct protein subunits. Five (Rpp20, Rpp21, Rpp25, Rpp29 and Pop5) out of eight of these protein subunits, prepared in refolded recombinant forms, bind to H1 RNA in vitro. Rpp20 and Rpp25 bind jointly to H1 RNA, even though each protein can interact independently with this transcript. Nuclease footprinting analysis reveals that Rpp20 and Rpp25 recognize overlapping regions in the P2 and P3 domains of H1 RNA. Rpp21 and Rpp29, which are sufficient for reconstitution of the endonucleolytic activity, bind to separate regions in the catalytic domain of H1 RNA. Common themes and discrepancies in the RNA-protein interactions between human nuclear RNase P and its related yeast and archaeal counterparts provide a rationale for the assembly of the fully active form of this enzyme. Oxford University Press 2011-07 2011-03-30 /pmc/articles/PMC3141246/ /pubmed/21450806 http://dx.doi.org/10.1093/nar/gkr126 Text en © The Author(s) 2011. Published by Oxford University Press. http://creativecommons.org/licenses/by-nc/2.5 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | RNA Reiner, Robert Alfiya-Mor, Noa Berrebi-Demma, Mishka Wesolowski, Donna Altman, Sidney Jarrous, Nayef RNA binding properties of conserved protein subunits of human RNase P |
title | RNA binding properties of conserved protein subunits of human RNase P |
title_full | RNA binding properties of conserved protein subunits of human RNase P |
title_fullStr | RNA binding properties of conserved protein subunits of human RNase P |
title_full_unstemmed | RNA binding properties of conserved protein subunits of human RNase P |
title_short | RNA binding properties of conserved protein subunits of human RNase P |
title_sort | rna binding properties of conserved protein subunits of human rnase p |
topic | RNA |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3141246/ https://www.ncbi.nlm.nih.gov/pubmed/21450806 http://dx.doi.org/10.1093/nar/gkr126 |
work_keys_str_mv | AT reinerrobert rnabindingpropertiesofconservedproteinsubunitsofhumanrnasep AT alfiyamornoa rnabindingpropertiesofconservedproteinsubunitsofhumanrnasep AT berrebidemmamishka rnabindingpropertiesofconservedproteinsubunitsofhumanrnasep AT wesolowskidonna rnabindingpropertiesofconservedproteinsubunitsofhumanrnasep AT altmansidney rnabindingpropertiesofconservedproteinsubunitsofhumanrnasep AT jarrousnayef rnabindingpropertiesofconservedproteinsubunitsofhumanrnasep |