Cargando…

The evolutionary history of the catenin gene family during metazoan evolution

BACKGROUND: Catenin is a gene family composed of three subfamilies; p120, beta and alpha. Beta and p120 are homologous subfamilies based on sequence and structural comparisons, and are members of the armadillo repeat protein superfamily. Alpha does not appear to be homologous to either beta or p120...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Zi-Ming, Reynolds, Albert B, Gaucher, Eric A
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3141441/
https://www.ncbi.nlm.nih.gov/pubmed/21740572
http://dx.doi.org/10.1186/1471-2148-11-198
_version_ 1782208681713074176
author Zhao, Zi-Ming
Reynolds, Albert B
Gaucher, Eric A
author_facet Zhao, Zi-Ming
Reynolds, Albert B
Gaucher, Eric A
author_sort Zhao, Zi-Ming
collection PubMed
description BACKGROUND: Catenin is a gene family composed of three subfamilies; p120, beta and alpha. Beta and p120 are homologous subfamilies based on sequence and structural comparisons, and are members of the armadillo repeat protein superfamily. Alpha does not appear to be homologous to either beta or p120 based on the lack of sequence and structural similarity, and the alpha subfamily belongs to the vinculin superfamily. Catenins link the transmembrane protein cadherin to the cytoskeleton and thus function in cell-cell adhesion. To date, only the beta subfamily has been evolutionarily analyzed and experimentally studied for its functions in signaling pathways, development and human diseases such as cancer. We present a detailed evolutionary study of the whole catenin family to provide a better understanding of how this family has evolved in metazoans, and by extension, the evolution of cell-cell adhesion. RESULTS: All three catenin subfamilies have been detected in metazoans used in the present study by searching public databases and applying species-specific BLAST searches. Two monophyletic clades are formed between beta and p120 subfamilies using Bayesian phylogenetic inference. Phylogenetic analyses also reveal an array of duplication events throughout metazoan history. Furthermore, numerous annotation issues for the catenin family have been detected by our computational analyses. CONCLUSIONS: Delta2/ARVCF catenin in the p120 subfamily, beta catenin in the beta subfamily, and alpha2 catenin in the alpha subfamily are present in all metazoans analyzed. This implies that the last common ancestor of metazoans had these three catenin subfamilies. However, not all members within each subfamily were detected in all metazoan species. Each subfamily has undergone duplications at different levels (species-specific, subphylum-specific or phylum-specific) and to different extents (in the case of the number of homologs). Extensive annotation problems have been resolved in each of the three catenin subfamilies. This resolution provides a more coherent description of catenin evolution.
format Online
Article
Text
id pubmed-3141441
institution National Center for Biotechnology Information
language English
publishDate 2011
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-31414412011-07-23 The evolutionary history of the catenin gene family during metazoan evolution Zhao, Zi-Ming Reynolds, Albert B Gaucher, Eric A BMC Evol Biol Research Article BACKGROUND: Catenin is a gene family composed of three subfamilies; p120, beta and alpha. Beta and p120 are homologous subfamilies based on sequence and structural comparisons, and are members of the armadillo repeat protein superfamily. Alpha does not appear to be homologous to either beta or p120 based on the lack of sequence and structural similarity, and the alpha subfamily belongs to the vinculin superfamily. Catenins link the transmembrane protein cadherin to the cytoskeleton and thus function in cell-cell adhesion. To date, only the beta subfamily has been evolutionarily analyzed and experimentally studied for its functions in signaling pathways, development and human diseases such as cancer. We present a detailed evolutionary study of the whole catenin family to provide a better understanding of how this family has evolved in metazoans, and by extension, the evolution of cell-cell adhesion. RESULTS: All three catenin subfamilies have been detected in metazoans used in the present study by searching public databases and applying species-specific BLAST searches. Two monophyletic clades are formed between beta and p120 subfamilies using Bayesian phylogenetic inference. Phylogenetic analyses also reveal an array of duplication events throughout metazoan history. Furthermore, numerous annotation issues for the catenin family have been detected by our computational analyses. CONCLUSIONS: Delta2/ARVCF catenin in the p120 subfamily, beta catenin in the beta subfamily, and alpha2 catenin in the alpha subfamily are present in all metazoans analyzed. This implies that the last common ancestor of metazoans had these three catenin subfamilies. However, not all members within each subfamily were detected in all metazoan species. Each subfamily has undergone duplications at different levels (species-specific, subphylum-specific or phylum-specific) and to different extents (in the case of the number of homologs). Extensive annotation problems have been resolved in each of the three catenin subfamilies. This resolution provides a more coherent description of catenin evolution. BioMed Central 2011-07-08 /pmc/articles/PMC3141441/ /pubmed/21740572 http://dx.doi.org/10.1186/1471-2148-11-198 Text en Copyright ©2011 Zhao et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Zhao, Zi-Ming
Reynolds, Albert B
Gaucher, Eric A
The evolutionary history of the catenin gene family during metazoan evolution
title The evolutionary history of the catenin gene family during metazoan evolution
title_full The evolutionary history of the catenin gene family during metazoan evolution
title_fullStr The evolutionary history of the catenin gene family during metazoan evolution
title_full_unstemmed The evolutionary history of the catenin gene family during metazoan evolution
title_short The evolutionary history of the catenin gene family during metazoan evolution
title_sort evolutionary history of the catenin gene family during metazoan evolution
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3141441/
https://www.ncbi.nlm.nih.gov/pubmed/21740572
http://dx.doi.org/10.1186/1471-2148-11-198
work_keys_str_mv AT zhaoziming theevolutionaryhistoryofthecateningenefamilyduringmetazoanevolution
AT reynoldsalbertb theevolutionaryhistoryofthecateningenefamilyduringmetazoanevolution
AT gauchererica theevolutionaryhistoryofthecateningenefamilyduringmetazoanevolution
AT zhaoziming evolutionaryhistoryofthecateningenefamilyduringmetazoanevolution
AT reynoldsalbertb evolutionaryhistoryofthecateningenefamilyduringmetazoanevolution
AT gauchererica evolutionaryhistoryofthecateningenefamilyduringmetazoanevolution