Cargando…

Specific microtubule-depolymerizing agents augment efficacy of dendritic cell-based cancer vaccines

BACKGROUND: Damage-associated molecular patterns (DAMPs) are associated with immunogenic cell death and have the ability to enhance maturation and antigen presentation of dendritic cells (DCs). Specific microtubule-depolymerizing agents (MDAs) such as colchicine have been shown to confer anti-cancer...

Descripción completa

Detalles Bibliográficos
Autores principales: Wen, Chih-Chun, Chen, Hui-Ming, Chen, Swey-Shen, Huang, Li-Ting, Chang, Wei-Ting, Wei, Wen-Chi, Chou, Li-Chen, Arulselvan, Palanisamy, Wu, Jin-Bin, Kuo, Sheng-Chu, Yang, Ning-Sun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3141632/
https://www.ncbi.nlm.nih.gov/pubmed/21689407
http://dx.doi.org/10.1186/1423-0127-18-44
Descripción
Sumario:BACKGROUND: Damage-associated molecular patterns (DAMPs) are associated with immunogenic cell death and have the ability to enhance maturation and antigen presentation of dendritic cells (DCs). Specific microtubule-depolymerizing agents (MDAs) such as colchicine have been shown to confer anti-cancer activity and also trigger activation of DCs. METHODS: In this study, we evaluated the ability of three MDAs (colchicine and two 2-phenyl-4-quinolone analogues) to induce immunogenic cell death in test tumor cells, activate DCs, and augment T-cell proliferation activity. These MDAs were further evaluated for use as an adjuvant in a tumor cell lysate-pulsed DC vaccine. RESULTS: The three test phytochemicals considerably increased the expression of DAMPs including HSP70, HSP90 and HMGB1, but had no effect on expression of calreticulin (CRT). DC vaccines pulsed with MDA-treated tumor cell lysates had a significant effect on tumor growth, showed cytotoxic T-lymphocyte activity against tumors, and increased the survival rate of test mice. In vivo antibody depletion experiments suggested that CD8(+ )and NK cells, but not CD4(+ )cells, were the main effector cells responsible for the observed anti-tumor activity. In addition, culture of DCs with GM-CSF and IL-4 during the pulsing and stimulation period significantly increased the production of IL-12 and decreased production of IL-10. MDAs also induced phenotypic maturation of DCs and augmented CD4(+ )and CD8(+ )T-cell proliferation when co-cultured with DCs. CONCLUSIONS: Specific MDAs including the clinical drug, colchicine, can induce immunogenic cell death in tumor cells, and DCs pulsed with MDA-treated tumor cell lysates (TCLs) can generate potent anti-tumor immunity in mice. This approach may warrant future clinical evaluation as a cancer vaccine.