Cargando…
Characterization of single-nucleotide variation in Indian-origin rhesus macaques (Macaca mulatta)
BACKGROUND: Rhesus macaques are the most widely utilized nonhuman primate model in biomedical research. Previous efforts have validated fewer than 900 single nucleotide polymorphisms (SNPs) in this species, which limits opportunities for genetic studies related to health and disease. Extensive infor...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3141668/ https://www.ncbi.nlm.nih.gov/pubmed/21668978 http://dx.doi.org/10.1186/1471-2164-12-311 |
_version_ | 1782208730988806144 |
---|---|
author | Fawcett, Gloria L Raveendran, Muthuswamy Deiros, David Rio Chen, David Yu, Fuli Harris, Ronald Alan Ren, Yanru Muzny, Donna M Reid, Jeffrey G Wheeler, David A Worley, Kimberly C Shelton, Steven E Kalin, Ned H Milosavljevic, Aleksandar Gibbs, Richard Rogers, Jeffrey |
author_facet | Fawcett, Gloria L Raveendran, Muthuswamy Deiros, David Rio Chen, David Yu, Fuli Harris, Ronald Alan Ren, Yanru Muzny, Donna M Reid, Jeffrey G Wheeler, David A Worley, Kimberly C Shelton, Steven E Kalin, Ned H Milosavljevic, Aleksandar Gibbs, Richard Rogers, Jeffrey |
author_sort | Fawcett, Gloria L |
collection | PubMed |
description | BACKGROUND: Rhesus macaques are the most widely utilized nonhuman primate model in biomedical research. Previous efforts have validated fewer than 900 single nucleotide polymorphisms (SNPs) in this species, which limits opportunities for genetic studies related to health and disease. Extensive information about SNPs and other genetic variation in rhesus macaques would facilitate valuable genetic analyses, as well as provide markers for genome-wide linkage analysis and the genetic management of captive breeding colonies. RESULTS: We used the available rhesus macaque draft genome sequence, new sequence data from unrelated individuals and existing published sequence data to create a genome-wide SNP resource for Indian-origin rhesus monkeys. The original reference animal and two additional Indian-origin individuals were resequenced to low coverage using SOLiD™ sequencing. We then used three strategies to validate SNPs: comparison of potential SNPs found in the same individual using two different sequencing chemistries, and comparison of potential SNPs in different individuals identified with either the same or different sequencing chemistries. Our approach validated approximately 3 million SNPs distributed across the genome. Preliminary analysis of SNP annotations suggests that a substantial number of these macaque SNPs may have functional effects. More than 700 non-synonymous SNPs were scored by Polyphen-2 as either possibly or probably damaging to protein function and these variants now constitute potential models for studying functional genetic variation relevant to human physiology and disease. CONCLUSIONS: Resequencing of a small number of animals identified greater than 3 million SNPs. This provides a significant new information resource for rhesus macaques, an important research animal. The data also suggests that overall genetic variation is high in this species. We identified many potentially damaging non-synonymous coding SNPs, providing new opportunities to identify rhesus models for human disease. |
format | Online Article Text |
id | pubmed-3141668 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-31416682011-07-23 Characterization of single-nucleotide variation in Indian-origin rhesus macaques (Macaca mulatta) Fawcett, Gloria L Raveendran, Muthuswamy Deiros, David Rio Chen, David Yu, Fuli Harris, Ronald Alan Ren, Yanru Muzny, Donna M Reid, Jeffrey G Wheeler, David A Worley, Kimberly C Shelton, Steven E Kalin, Ned H Milosavljevic, Aleksandar Gibbs, Richard Rogers, Jeffrey BMC Genomics Research Article BACKGROUND: Rhesus macaques are the most widely utilized nonhuman primate model in biomedical research. Previous efforts have validated fewer than 900 single nucleotide polymorphisms (SNPs) in this species, which limits opportunities for genetic studies related to health and disease. Extensive information about SNPs and other genetic variation in rhesus macaques would facilitate valuable genetic analyses, as well as provide markers for genome-wide linkage analysis and the genetic management of captive breeding colonies. RESULTS: We used the available rhesus macaque draft genome sequence, new sequence data from unrelated individuals and existing published sequence data to create a genome-wide SNP resource for Indian-origin rhesus monkeys. The original reference animal and two additional Indian-origin individuals were resequenced to low coverage using SOLiD™ sequencing. We then used three strategies to validate SNPs: comparison of potential SNPs found in the same individual using two different sequencing chemistries, and comparison of potential SNPs in different individuals identified with either the same or different sequencing chemistries. Our approach validated approximately 3 million SNPs distributed across the genome. Preliminary analysis of SNP annotations suggests that a substantial number of these macaque SNPs may have functional effects. More than 700 non-synonymous SNPs were scored by Polyphen-2 as either possibly or probably damaging to protein function and these variants now constitute potential models for studying functional genetic variation relevant to human physiology and disease. CONCLUSIONS: Resequencing of a small number of animals identified greater than 3 million SNPs. This provides a significant new information resource for rhesus macaques, an important research animal. The data also suggests that overall genetic variation is high in this species. We identified many potentially damaging non-synonymous coding SNPs, providing new opportunities to identify rhesus models for human disease. BioMed Central 2011-06-13 /pmc/articles/PMC3141668/ /pubmed/21668978 http://dx.doi.org/10.1186/1471-2164-12-311 Text en Copyright ©2011 Fawcett et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Fawcett, Gloria L Raveendran, Muthuswamy Deiros, David Rio Chen, David Yu, Fuli Harris, Ronald Alan Ren, Yanru Muzny, Donna M Reid, Jeffrey G Wheeler, David A Worley, Kimberly C Shelton, Steven E Kalin, Ned H Milosavljevic, Aleksandar Gibbs, Richard Rogers, Jeffrey Characterization of single-nucleotide variation in Indian-origin rhesus macaques (Macaca mulatta) |
title | Characterization of single-nucleotide variation in Indian-origin rhesus macaques (Macaca mulatta) |
title_full | Characterization of single-nucleotide variation in Indian-origin rhesus macaques (Macaca mulatta) |
title_fullStr | Characterization of single-nucleotide variation in Indian-origin rhesus macaques (Macaca mulatta) |
title_full_unstemmed | Characterization of single-nucleotide variation in Indian-origin rhesus macaques (Macaca mulatta) |
title_short | Characterization of single-nucleotide variation in Indian-origin rhesus macaques (Macaca mulatta) |
title_sort | characterization of single-nucleotide variation in indian-origin rhesus macaques (macaca mulatta) |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3141668/ https://www.ncbi.nlm.nih.gov/pubmed/21668978 http://dx.doi.org/10.1186/1471-2164-12-311 |
work_keys_str_mv | AT fawcettglorial characterizationofsinglenucleotidevariationinindianoriginrhesusmacaquesmacacamulatta AT raveendranmuthuswamy characterizationofsinglenucleotidevariationinindianoriginrhesusmacaquesmacacamulatta AT deirosdavidrio characterizationofsinglenucleotidevariationinindianoriginrhesusmacaquesmacacamulatta AT chendavid characterizationofsinglenucleotidevariationinindianoriginrhesusmacaquesmacacamulatta AT yufuli characterizationofsinglenucleotidevariationinindianoriginrhesusmacaquesmacacamulatta AT harrisronaldalan characterizationofsinglenucleotidevariationinindianoriginrhesusmacaquesmacacamulatta AT renyanru characterizationofsinglenucleotidevariationinindianoriginrhesusmacaquesmacacamulatta AT muznydonnam characterizationofsinglenucleotidevariationinindianoriginrhesusmacaquesmacacamulatta AT reidjeffreyg characterizationofsinglenucleotidevariationinindianoriginrhesusmacaquesmacacamulatta AT wheelerdavida characterizationofsinglenucleotidevariationinindianoriginrhesusmacaquesmacacamulatta AT worleykimberlyc characterizationofsinglenucleotidevariationinindianoriginrhesusmacaquesmacacamulatta AT sheltonstevene characterizationofsinglenucleotidevariationinindianoriginrhesusmacaquesmacacamulatta AT kalinnedh characterizationofsinglenucleotidevariationinindianoriginrhesusmacaquesmacacamulatta AT milosavljevicaleksandar characterizationofsinglenucleotidevariationinindianoriginrhesusmacaquesmacacamulatta AT gibbsrichard characterizationofsinglenucleotidevariationinindianoriginrhesusmacaquesmacacamulatta AT rogersjeffrey characterizationofsinglenucleotidevariationinindianoriginrhesusmacaquesmacacamulatta |