Cargando…

Uncoupling of Proliferation and Cytokines From Suppression Within the CD4+CD25+Foxp3+ T–Cell Compartment in the 1st Year of Human Type 1 Diabetes

OBJECTIVE: The mechanistic basis for the breakdown of T-cell tolerance in type 1 diabetes is unclear and could result from a gain of effector function and/or loss of regulatory function. In humans, the CD4+CD25+Foxp3+ T–cell compartment contains both effector and regulatory T cells, and it is not kn...

Descripción completa

Detalles Bibliográficos
Autores principales: Hughson, Angela, Bromberg, Irina, Johnson, Barbara, Quataert, Sally, Jospe, Nicholas, Fowell, Deborah J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Diabetes Association 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3142074/
https://www.ncbi.nlm.nih.gov/pubmed/21715555
http://dx.doi.org/10.2337/db10-1661
Descripción
Sumario:OBJECTIVE: The mechanistic basis for the breakdown of T-cell tolerance in type 1 diabetes is unclear and could result from a gain of effector function and/or loss of regulatory function. In humans, the CD4+CD25+Foxp3+ T–cell compartment contains both effector and regulatory T cells, and it is not known how their relative proportions vary in disease states. RESEARCH DESIGN AND METHODS: We performed a longitudinal study of CD4+CD25+ T–cell function in children with type 1 diabetes at onset and throughout the 1st year of disease. Function was assessed using single-cell assays of proliferation, cytokine production, and suppression. Type 1 diabetic individuals were compared with age-matched control subjects, and suppression was directly assessed by coculture with control T–cell targets. RESULTS: We identify novel functional changes within the type 1 diabetes CD4+CD25+ compartment. Type 1 diabetic CD4+CD25+ cells exhibited a striking increase in proliferative capacity in coculture with CD4 T cells that was present at onset and stable 9–12 months from diagnosis. Elevated type 1 diabetes CD4+CD25+ cell proliferation correlated with increased inflammatory cytokines interleukin 17 and tumor necrosis factor-α but not γ-interferon. Type 1 diabetes CD4+CD25+ cytokine production occurred coincident with suppression of the same cytokines in the control targets. Indeed, enhanced proliferation/cytokines by CD4+CD25+ cells was uncoupled from their suppressive ability. Longitudinally, we observed a transient defect in type 1 diabetes CD4+CD25+ suppression that unexpectedly correlated with measures of improved metabolic function. CONCLUSIONS: Type 1 diabetes onset, and its subsequent remission period, is associated with two independent functional changes within the CD4+CD25+ T–cell compartment: a stable increase in effector function and a transient decrease in regulatory T–cell suppression.