Cargando…
Gene set analysis for longitudinal gene expression data
BACKGROUND: Gene set analysis (GSA) has become a successful tool to interpret gene expression profiles in terms of biological functions, molecular pathways, or genomic locations. GSA performs statistical tests for independent microarray samples at the level of gene sets rather than individual genes....
Autores principales: | Zhang, Ke, Wang, Haiyan, Bathke, Arne C, Harrar, Solomon W, Piepho, Hans-Peter, Deng, Youping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3142525/ https://www.ncbi.nlm.nih.gov/pubmed/21722407 http://dx.doi.org/10.1186/1471-2105-12-273 |
Ejemplares similares
-
Joint analysis of two microarray gene-expression data sets to select lung adenocarcinoma marker genes
por: Jiang, Hongying, et al.
Publicado: (2004) -
High-dimensional repeated measures
por: Happ, Martin, et al.
Publicado: (2017) -
Incremental genetic K-means algorithm and its application in gene expression data analysis
por: Lu, Yi, et al.
Publicado: (2004) -
Longitudinal linear combination test for gene set analysis
por: Khodayari Moez, Elham, et al.
Publicado: (2019) -
ADAGE signature analysis: differential expression analysis with data-defined gene sets
por: Tan, Jie, et al.
Publicado: (2017)