Cargando…
Cortical gene transcription response patterns to water maze training in aged mice
BACKGROUND: The hippocampus mediates the acquisition of spatial memory, but the memory trace is eventually transferred to the cortex. We have investigated transcriptional activation of pathways related to cognitive function in the cortex of the aged mouse by analyzing gene expression following water...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3142531/ https://www.ncbi.nlm.nih.gov/pubmed/21714909 http://dx.doi.org/10.1186/1471-2202-12-63 |
_version_ | 1782208840406663168 |
---|---|
author | Park, Sung-Soo Stranahan, Alexis M Chadwick, Wayne Zhou, Yu Wang, Liyun Martin, Bronwen Becker, Kevin G Maudsley, Stuart |
author_facet | Park, Sung-Soo Stranahan, Alexis M Chadwick, Wayne Zhou, Yu Wang, Liyun Martin, Bronwen Becker, Kevin G Maudsley, Stuart |
author_sort | Park, Sung-Soo |
collection | PubMed |
description | BACKGROUND: The hippocampus mediates the acquisition of spatial memory, but the memory trace is eventually transferred to the cortex. We have investigated transcriptional activation of pathways related to cognitive function in the cortex of the aged mouse by analyzing gene expression following water maze training. RESULTS: We identified genes that were differentially responsive in aged mice with accurate spatial performance during probe trials or repeated swimming sessions, relative to home cage conditions. Effective learners exhibited significantly greater activation of several pathways, such as the mitogen-activated protein kinase and insulin receptor signaling pathways, relative to swimmers. The genes encoding activity-related cytoskeletal protein (Arc) and brain-derived neurotrophic factor (BDNF) were upregulated in proficient learners, relative to swimmers and home cage controls, while the gene encoding Rho GTPase activating protein 32 (GRIT) was downregulated. We explored the regulation of Arc, BDNF, and GRIT expression in greater morphological detail using in situ hybridization. Recall during probe trials enhanced Arc expression across multiple cortical regions involved in the cognitive component of water maze learning, while BDNF expression was more homogeneously upregulated across cortical regions involved in the associational and sensorimotor aspects of water maze training. In contrast, levels of GRIT expression were uniformly reduced across all cortical regions examined. CONCLUSIONS: These results suggest that cortical gene transcription is responsive to learning in aged mice that exhibit behavioral proficiency, and support a distributed hypothesis of memory storage across multiple cortical compartments. |
format | Online Article Text |
id | pubmed-3142531 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-31425312011-07-24 Cortical gene transcription response patterns to water maze training in aged mice Park, Sung-Soo Stranahan, Alexis M Chadwick, Wayne Zhou, Yu Wang, Liyun Martin, Bronwen Becker, Kevin G Maudsley, Stuart BMC Neurosci Research Article BACKGROUND: The hippocampus mediates the acquisition of spatial memory, but the memory trace is eventually transferred to the cortex. We have investigated transcriptional activation of pathways related to cognitive function in the cortex of the aged mouse by analyzing gene expression following water maze training. RESULTS: We identified genes that were differentially responsive in aged mice with accurate spatial performance during probe trials or repeated swimming sessions, relative to home cage conditions. Effective learners exhibited significantly greater activation of several pathways, such as the mitogen-activated protein kinase and insulin receptor signaling pathways, relative to swimmers. The genes encoding activity-related cytoskeletal protein (Arc) and brain-derived neurotrophic factor (BDNF) were upregulated in proficient learners, relative to swimmers and home cage controls, while the gene encoding Rho GTPase activating protein 32 (GRIT) was downregulated. We explored the regulation of Arc, BDNF, and GRIT expression in greater morphological detail using in situ hybridization. Recall during probe trials enhanced Arc expression across multiple cortical regions involved in the cognitive component of water maze learning, while BDNF expression was more homogeneously upregulated across cortical regions involved in the associational and sensorimotor aspects of water maze training. In contrast, levels of GRIT expression were uniformly reduced across all cortical regions examined. CONCLUSIONS: These results suggest that cortical gene transcription is responsive to learning in aged mice that exhibit behavioral proficiency, and support a distributed hypothesis of memory storage across multiple cortical compartments. BioMed Central 2011-06-29 /pmc/articles/PMC3142531/ /pubmed/21714909 http://dx.doi.org/10.1186/1471-2202-12-63 Text en Copyright ©2011 Park et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Park, Sung-Soo Stranahan, Alexis M Chadwick, Wayne Zhou, Yu Wang, Liyun Martin, Bronwen Becker, Kevin G Maudsley, Stuart Cortical gene transcription response patterns to water maze training in aged mice |
title | Cortical gene transcription response patterns to water maze training in aged mice |
title_full | Cortical gene transcription response patterns to water maze training in aged mice |
title_fullStr | Cortical gene transcription response patterns to water maze training in aged mice |
title_full_unstemmed | Cortical gene transcription response patterns to water maze training in aged mice |
title_short | Cortical gene transcription response patterns to water maze training in aged mice |
title_sort | cortical gene transcription response patterns to water maze training in aged mice |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3142531/ https://www.ncbi.nlm.nih.gov/pubmed/21714909 http://dx.doi.org/10.1186/1471-2202-12-63 |
work_keys_str_mv | AT parksungsoo corticalgenetranscriptionresponsepatternstowatermazetraininginagedmice AT stranahanalexism corticalgenetranscriptionresponsepatternstowatermazetraininginagedmice AT chadwickwayne corticalgenetranscriptionresponsepatternstowatermazetraininginagedmice AT zhouyu corticalgenetranscriptionresponsepatternstowatermazetraininginagedmice AT wangliyun corticalgenetranscriptionresponsepatternstowatermazetraininginagedmice AT martinbronwen corticalgenetranscriptionresponsepatternstowatermazetraininginagedmice AT beckerkeving corticalgenetranscriptionresponsepatternstowatermazetraininginagedmice AT maudsleystuart corticalgenetranscriptionresponsepatternstowatermazetraininginagedmice |