Cargando…
Measuring the Induced Membrane Voltage with Di-8-ANEPPS
Placement of a cell into an external electric field causes a local charge redistribution inside and outside of the cell in the vicinity of the cell membrane, resulting in a voltage across the membrane. This voltage, termed the induced membrane voltage (also induced transmembrane voltage, or induced...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MyJove Corporation
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3142892/ https://www.ncbi.nlm.nih.gov/pubmed/19927116 http://dx.doi.org/10.3791/1659 |
Sumario: | Placement of a cell into an external electric field causes a local charge redistribution inside and outside of the cell in the vicinity of the cell membrane, resulting in a voltage across the membrane. This voltage, termed the induced membrane voltage (also induced transmembrane voltage, or induced transmembrane potential difference) and denoted by ΔΦ, exists only as long as the external field is present. If the resting voltage is present on the membrane, the induced voltage superimposes (adds) onto it. By using one of the potentiometric fluorescent dyes, such as di-8-ANEPPS, it is possible to observe the variations of ΔΦ on the cell membrane and to measure its value noninvasively. di-8-ANEPPS becomes strongly fluorescent when bound to the lipid bilayer of the cell membrane, with the change of the fluorescence intensity proportional to the change of ΔΦ. This video shows the protocol for measuring ΔΦ using di-8-ANEPPS and also demonstrates the influence of cell shape on the amplitude and spatial distribution of ΔΦ. |
---|