Cargando…

Survey and characterization of NBS-LRR (R) genes in Curcuma longa transcriptome

Resistance genes are among the most important gene classes for plant breeding purposes being responsible for activation of plant defense mechanisms. Among them, the nucleotide binding site-leucine rich repeat (NBS-LRR) class R-genes are the most abundant and actively found in all types of plants. In...

Descripción completa

Detalles Bibliográficos
Autores principales: Joshi, Raj Kumar, Kar, Basudeba, Nayak, Sanghamitra
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Biomedical Informatics 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3143401/
https://www.ncbi.nlm.nih.gov/pubmed/21814396
Descripción
Sumario:Resistance genes are among the most important gene classes for plant breeding purposes being responsible for activation of plant defense mechanisms. Among them, the nucleotide binding site-leucine rich repeat (NBS-LRR) class R-genes are the most abundant and actively found in all types of plants. Insilico characterization of EST database resulted in the detection of 28 NBS types R-gene sequences in Curcuma longa. All the 28 sequences represented the NB-ARC domain, 21 of which were found to have highly conserved motif characteristics and categorized as regular NBS genes. The Open Reading Frames varied from 361 (CL.CON.3566) to 112 (CL.CON.1267) with an average of 279 amino acids. Most alignment occurred with monocots (67.8%) with emphasis on Oryza sativa and Zingiber sequences. All best alignments with dicots occurred with Arabidopsis thaliana, Populus trichocarpa and Medicago sativa. These detected NBS type Rgenes from Curcuma longa can be used as a valuable resource for molecular marker development, molecular mapping of R-genes, and identification of resistance gene analogs and functional and evolutionary characterization of NBS–LRR–encoding resistance genes in asexually reproducing plants.