Cargando…
Skeletal muscle proteomics: current approaches, technical challenges and emerging techniques
BACKGROUND: Skeletal muscle fibres represent one of the most abundant cell types in mammals. Their highly specialised contractile and metabolic functions depend on a large number of membrane-associated proteins with very high molecular masses, proteins with extensive posttranslational modifications...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3143904/ https://www.ncbi.nlm.nih.gov/pubmed/21798084 http://dx.doi.org/10.1186/2044-5040-1-6 |
_version_ | 1782208944472588288 |
---|---|
author | Ohlendieck, Kay |
author_facet | Ohlendieck, Kay |
author_sort | Ohlendieck, Kay |
collection | PubMed |
description | BACKGROUND: Skeletal muscle fibres represent one of the most abundant cell types in mammals. Their highly specialised contractile and metabolic functions depend on a large number of membrane-associated proteins with very high molecular masses, proteins with extensive posttranslational modifications and components that exist in highly complex supramolecular structures. This makes it extremely difficult to perform conventional biochemical studies of potential changes in protein clusters during physiological adaptations or pathological processes. RESULTS: Skeletal muscle proteomics attempts to establish the global identification and biochemical characterisation of all members of the muscle-associated protein complement. A considerable number of proteomic studies have employed large-scale separation techniques, such as high-resolution two-dimensional gel electrophoresis or liquid chromatography, and combined them with mass spectrometry as the method of choice for high-throughput protein identification. Muscle proteomics has been applied to the comprehensive biochemical profiling of developing, maturing and aging muscle, as well as the analysis of contractile tissues undergoing physiological adaptations seen in disuse atrophy, physical exercise and chronic muscle transformation. Biomedical investigations into proteome-wide alterations in skeletal muscle tissues were also used to establish novel biomarker signatures of neuromuscular disorders. Importantly, mass spectrometric studies have confirmed the enormous complexity of posttranslational modifications in skeletal muscle proteins. CONCLUSIONS: This review critically examines the scientific impact of modern muscle proteomics and discusses its successful application for a better understanding of muscle biology, but also outlines its technical limitations and emerging techniques to establish new biomarker candidates. |
format | Online Article Text |
id | pubmed-3143904 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-31439042011-07-27 Skeletal muscle proteomics: current approaches, technical challenges and emerging techniques Ohlendieck, Kay Skelet Muscle Review BACKGROUND: Skeletal muscle fibres represent one of the most abundant cell types in mammals. Their highly specialised contractile and metabolic functions depend on a large number of membrane-associated proteins with very high molecular masses, proteins with extensive posttranslational modifications and components that exist in highly complex supramolecular structures. This makes it extremely difficult to perform conventional biochemical studies of potential changes in protein clusters during physiological adaptations or pathological processes. RESULTS: Skeletal muscle proteomics attempts to establish the global identification and biochemical characterisation of all members of the muscle-associated protein complement. A considerable number of proteomic studies have employed large-scale separation techniques, such as high-resolution two-dimensional gel electrophoresis or liquid chromatography, and combined them with mass spectrometry as the method of choice for high-throughput protein identification. Muscle proteomics has been applied to the comprehensive biochemical profiling of developing, maturing and aging muscle, as well as the analysis of contractile tissues undergoing physiological adaptations seen in disuse atrophy, physical exercise and chronic muscle transformation. Biomedical investigations into proteome-wide alterations in skeletal muscle tissues were also used to establish novel biomarker signatures of neuromuscular disorders. Importantly, mass spectrometric studies have confirmed the enormous complexity of posttranslational modifications in skeletal muscle proteins. CONCLUSIONS: This review critically examines the scientific impact of modern muscle proteomics and discusses its successful application for a better understanding of muscle biology, but also outlines its technical limitations and emerging techniques to establish new biomarker candidates. BioMed Central 2011-02-01 /pmc/articles/PMC3143904/ /pubmed/21798084 http://dx.doi.org/10.1186/2044-5040-1-6 Text en Copyright ©2011 Ohlendieck; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Review Ohlendieck, Kay Skeletal muscle proteomics: current approaches, technical challenges and emerging techniques |
title | Skeletal muscle proteomics: current approaches, technical challenges and emerging techniques |
title_full | Skeletal muscle proteomics: current approaches, technical challenges and emerging techniques |
title_fullStr | Skeletal muscle proteomics: current approaches, technical challenges and emerging techniques |
title_full_unstemmed | Skeletal muscle proteomics: current approaches, technical challenges and emerging techniques |
title_short | Skeletal muscle proteomics: current approaches, technical challenges and emerging techniques |
title_sort | skeletal muscle proteomics: current approaches, technical challenges and emerging techniques |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3143904/ https://www.ncbi.nlm.nih.gov/pubmed/21798084 http://dx.doi.org/10.1186/2044-5040-1-6 |
work_keys_str_mv | AT ohlendieckkay skeletalmuscleproteomicscurrentapproachestechnicalchallengesandemergingtechniques |