Cargando…

A Prognostic Model for Estimating the Time to Virologic Failure in HIV-1 Infected Patients Undergoing a New Combination Antiretroviral Therapy Regimen

BACKGROUND: HIV-1 genotypic susceptibility scores (GSSs) were proven to be significant prognostic factors of fixed time-point virologic outcomes after combination antiretroviral therapy (cART) switch/initiation. However, their relative-hazard for the time to virologic failure has not been thoroughly...

Descripción completa

Detalles Bibliográficos
Autores principales: Prosperi, Mattia CF, Di Giambenedetto, Simona, Fanti, Iuri, Meini, Genny, Bruzzone, Bianca, Callegaro, Annapaola, Penco, Giovanni, Bagnarelli, Patrizia, Micheli, Valeria, Paolini, Elisabetta, Di Biagio, Antonio, Ghisetti, Valeria, Di Pietro, Massimo, Zazzi, Maurizio, De Luca, Andrea
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3144446/
https://www.ncbi.nlm.nih.gov/pubmed/21672248
http://dx.doi.org/10.1186/1472-6947-11-40
_version_ 1782209001894707200
author Prosperi, Mattia CF
Di Giambenedetto, Simona
Fanti, Iuri
Meini, Genny
Bruzzone, Bianca
Callegaro, Annapaola
Penco, Giovanni
Bagnarelli, Patrizia
Micheli, Valeria
Paolini, Elisabetta
Di Biagio, Antonio
Ghisetti, Valeria
Di Pietro, Massimo
Zazzi, Maurizio
De Luca, Andrea
author_facet Prosperi, Mattia CF
Di Giambenedetto, Simona
Fanti, Iuri
Meini, Genny
Bruzzone, Bianca
Callegaro, Annapaola
Penco, Giovanni
Bagnarelli, Patrizia
Micheli, Valeria
Paolini, Elisabetta
Di Biagio, Antonio
Ghisetti, Valeria
Di Pietro, Massimo
Zazzi, Maurizio
De Luca, Andrea
author_sort Prosperi, Mattia CF
collection PubMed
description BACKGROUND: HIV-1 genotypic susceptibility scores (GSSs) were proven to be significant prognostic factors of fixed time-point virologic outcomes after combination antiretroviral therapy (cART) switch/initiation. However, their relative-hazard for the time to virologic failure has not been thoroughly investigated, and an expert system that is able to predict how long a new cART regimen will remain effective has never been designed. METHODS: We analyzed patients of the Italian ARCA cohort starting a new cART from 1999 onwards either after virologic failure or as treatment-naïve. The time to virologic failure was the endpoint, from the 90(th )day after treatment start, defined as the first HIV-1 RNA > 400 copies/ml, censoring at last available HIV-1 RNA before treatment discontinuation. We assessed the relative hazard/importance of GSSs according to distinct interpretation systems (Rega, ANRS and HIVdb) and other covariates by means of Cox regression and random survival forests (RSF). Prediction models were validated via the bootstrap and c-index measure. RESULTS: The dataset included 2337 regimens from 2182 patients, of which 733 were previously treatment-naïve. We observed 1067 virologic failures over 2820 persons-years. Multivariable analysis revealed that low GSSs of cART were independently associated with the hazard of a virologic failure, along with several other covariates. Evaluation of predictive performance yielded a modest ability of the Cox regression to predict the virologic endpoint (c-index≈0.70), while RSF showed a better performance (c-index≈0.73, p < 0.0001 vs. Cox regression). Variable importance according to RSF was concordant with the Cox hazards. CONCLUSIONS: GSSs of cART and several other covariates were investigated using linear and non-linear survival analysis. RSF models are a promising approach for the development of a reliable system that predicts time to virologic failure better than Cox regression. Such models might represent a significant improvement over the current methods for monitoring and optimization of cART.
format Online
Article
Text
id pubmed-3144446
institution National Center for Biotechnology Information
language English
publishDate 2011
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-31444462011-07-28 A Prognostic Model for Estimating the Time to Virologic Failure in HIV-1 Infected Patients Undergoing a New Combination Antiretroviral Therapy Regimen Prosperi, Mattia CF Di Giambenedetto, Simona Fanti, Iuri Meini, Genny Bruzzone, Bianca Callegaro, Annapaola Penco, Giovanni Bagnarelli, Patrizia Micheli, Valeria Paolini, Elisabetta Di Biagio, Antonio Ghisetti, Valeria Di Pietro, Massimo Zazzi, Maurizio De Luca, Andrea BMC Med Inform Decis Mak Research Article BACKGROUND: HIV-1 genotypic susceptibility scores (GSSs) were proven to be significant prognostic factors of fixed time-point virologic outcomes after combination antiretroviral therapy (cART) switch/initiation. However, their relative-hazard for the time to virologic failure has not been thoroughly investigated, and an expert system that is able to predict how long a new cART regimen will remain effective has never been designed. METHODS: We analyzed patients of the Italian ARCA cohort starting a new cART from 1999 onwards either after virologic failure or as treatment-naïve. The time to virologic failure was the endpoint, from the 90(th )day after treatment start, defined as the first HIV-1 RNA > 400 copies/ml, censoring at last available HIV-1 RNA before treatment discontinuation. We assessed the relative hazard/importance of GSSs according to distinct interpretation systems (Rega, ANRS and HIVdb) and other covariates by means of Cox regression and random survival forests (RSF). Prediction models were validated via the bootstrap and c-index measure. RESULTS: The dataset included 2337 regimens from 2182 patients, of which 733 were previously treatment-naïve. We observed 1067 virologic failures over 2820 persons-years. Multivariable analysis revealed that low GSSs of cART were independently associated with the hazard of a virologic failure, along with several other covariates. Evaluation of predictive performance yielded a modest ability of the Cox regression to predict the virologic endpoint (c-index≈0.70), while RSF showed a better performance (c-index≈0.73, p < 0.0001 vs. Cox regression). Variable importance according to RSF was concordant with the Cox hazards. CONCLUSIONS: GSSs of cART and several other covariates were investigated using linear and non-linear survival analysis. RSF models are a promising approach for the development of a reliable system that predicts time to virologic failure better than Cox regression. Such models might represent a significant improvement over the current methods for monitoring and optimization of cART. BioMed Central 2011-06-14 /pmc/articles/PMC3144446/ /pubmed/21672248 http://dx.doi.org/10.1186/1472-6947-11-40 Text en Copyright ©2011 Prosperi et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Prosperi, Mattia CF
Di Giambenedetto, Simona
Fanti, Iuri
Meini, Genny
Bruzzone, Bianca
Callegaro, Annapaola
Penco, Giovanni
Bagnarelli, Patrizia
Micheli, Valeria
Paolini, Elisabetta
Di Biagio, Antonio
Ghisetti, Valeria
Di Pietro, Massimo
Zazzi, Maurizio
De Luca, Andrea
A Prognostic Model for Estimating the Time to Virologic Failure in HIV-1 Infected Patients Undergoing a New Combination Antiretroviral Therapy Regimen
title A Prognostic Model for Estimating the Time to Virologic Failure in HIV-1 Infected Patients Undergoing a New Combination Antiretroviral Therapy Regimen
title_full A Prognostic Model for Estimating the Time to Virologic Failure in HIV-1 Infected Patients Undergoing a New Combination Antiretroviral Therapy Regimen
title_fullStr A Prognostic Model for Estimating the Time to Virologic Failure in HIV-1 Infected Patients Undergoing a New Combination Antiretroviral Therapy Regimen
title_full_unstemmed A Prognostic Model for Estimating the Time to Virologic Failure in HIV-1 Infected Patients Undergoing a New Combination Antiretroviral Therapy Regimen
title_short A Prognostic Model for Estimating the Time to Virologic Failure in HIV-1 Infected Patients Undergoing a New Combination Antiretroviral Therapy Regimen
title_sort prognostic model for estimating the time to virologic failure in hiv-1 infected patients undergoing a new combination antiretroviral therapy regimen
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3144446/
https://www.ncbi.nlm.nih.gov/pubmed/21672248
http://dx.doi.org/10.1186/1472-6947-11-40
work_keys_str_mv AT prosperimattiacf aprognosticmodelforestimatingthetimetovirologicfailureinhiv1infectedpatientsundergoinganewcombinationantiretroviraltherapyregimen
AT digiambenedettosimona aprognosticmodelforestimatingthetimetovirologicfailureinhiv1infectedpatientsundergoinganewcombinationantiretroviraltherapyregimen
AT fantiiuri aprognosticmodelforestimatingthetimetovirologicfailureinhiv1infectedpatientsundergoinganewcombinationantiretroviraltherapyregimen
AT meinigenny aprognosticmodelforestimatingthetimetovirologicfailureinhiv1infectedpatientsundergoinganewcombinationantiretroviraltherapyregimen
AT bruzzonebianca aprognosticmodelforestimatingthetimetovirologicfailureinhiv1infectedpatientsundergoinganewcombinationantiretroviraltherapyregimen
AT callegaroannapaola aprognosticmodelforestimatingthetimetovirologicfailureinhiv1infectedpatientsundergoinganewcombinationantiretroviraltherapyregimen
AT pencogiovanni aprognosticmodelforestimatingthetimetovirologicfailureinhiv1infectedpatientsundergoinganewcombinationantiretroviraltherapyregimen
AT bagnarellipatrizia aprognosticmodelforestimatingthetimetovirologicfailureinhiv1infectedpatientsundergoinganewcombinationantiretroviraltherapyregimen
AT michelivaleria aprognosticmodelforestimatingthetimetovirologicfailureinhiv1infectedpatientsundergoinganewcombinationantiretroviraltherapyregimen
AT paolinielisabetta aprognosticmodelforestimatingthetimetovirologicfailureinhiv1infectedpatientsundergoinganewcombinationantiretroviraltherapyregimen
AT dibiagioantonio aprognosticmodelforestimatingthetimetovirologicfailureinhiv1infectedpatientsundergoinganewcombinationantiretroviraltherapyregimen
AT ghisettivaleria aprognosticmodelforestimatingthetimetovirologicfailureinhiv1infectedpatientsundergoinganewcombinationantiretroviraltherapyregimen
AT dipietromassimo aprognosticmodelforestimatingthetimetovirologicfailureinhiv1infectedpatientsundergoinganewcombinationantiretroviraltherapyregimen
AT zazzimaurizio aprognosticmodelforestimatingthetimetovirologicfailureinhiv1infectedpatientsundergoinganewcombinationantiretroviraltherapyregimen
AT delucaandrea aprognosticmodelforestimatingthetimetovirologicfailureinhiv1infectedpatientsundergoinganewcombinationantiretroviraltherapyregimen
AT prosperimattiacf prognosticmodelforestimatingthetimetovirologicfailureinhiv1infectedpatientsundergoinganewcombinationantiretroviraltherapyregimen
AT digiambenedettosimona prognosticmodelforestimatingthetimetovirologicfailureinhiv1infectedpatientsundergoinganewcombinationantiretroviraltherapyregimen
AT fantiiuri prognosticmodelforestimatingthetimetovirologicfailureinhiv1infectedpatientsundergoinganewcombinationantiretroviraltherapyregimen
AT meinigenny prognosticmodelforestimatingthetimetovirologicfailureinhiv1infectedpatientsundergoinganewcombinationantiretroviraltherapyregimen
AT bruzzonebianca prognosticmodelforestimatingthetimetovirologicfailureinhiv1infectedpatientsundergoinganewcombinationantiretroviraltherapyregimen
AT callegaroannapaola prognosticmodelforestimatingthetimetovirologicfailureinhiv1infectedpatientsundergoinganewcombinationantiretroviraltherapyregimen
AT pencogiovanni prognosticmodelforestimatingthetimetovirologicfailureinhiv1infectedpatientsundergoinganewcombinationantiretroviraltherapyregimen
AT bagnarellipatrizia prognosticmodelforestimatingthetimetovirologicfailureinhiv1infectedpatientsundergoinganewcombinationantiretroviraltherapyregimen
AT michelivaleria prognosticmodelforestimatingthetimetovirologicfailureinhiv1infectedpatientsundergoinganewcombinationantiretroviraltherapyregimen
AT paolinielisabetta prognosticmodelforestimatingthetimetovirologicfailureinhiv1infectedpatientsundergoinganewcombinationantiretroviraltherapyregimen
AT dibiagioantonio prognosticmodelforestimatingthetimetovirologicfailureinhiv1infectedpatientsundergoinganewcombinationantiretroviraltherapyregimen
AT ghisettivaleria prognosticmodelforestimatingthetimetovirologicfailureinhiv1infectedpatientsundergoinganewcombinationantiretroviraltherapyregimen
AT dipietromassimo prognosticmodelforestimatingthetimetovirologicfailureinhiv1infectedpatientsundergoinganewcombinationantiretroviraltherapyregimen
AT zazzimaurizio prognosticmodelforestimatingthetimetovirologicfailureinhiv1infectedpatientsundergoinganewcombinationantiretroviraltherapyregimen
AT delucaandrea prognosticmodelforestimatingthetimetovirologicfailureinhiv1infectedpatientsundergoinganewcombinationantiretroviraltherapyregimen