Cargando…
Molecular Imaging in Tumor Angiogenesis and Relevant Drug Research
Molecular imaging, including fluorescence imaging (FMI), bioluminescence imaging (BLI), positron emission tomography (PET), single-photon emission-computed tomography (SPECT), and computed tomography (CT), has a pivotal role in the process of tumor and relevant drug research. CT, especially Micro-CT...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3144661/ https://www.ncbi.nlm.nih.gov/pubmed/21808639 http://dx.doi.org/10.1155/2011/370701 |
Sumario: | Molecular imaging, including fluorescence imaging (FMI), bioluminescence imaging (BLI), positron emission tomography (PET), single-photon emission-computed tomography (SPECT), and computed tomography (CT), has a pivotal role in the process of tumor and relevant drug research. CT, especially Micro-CT, can provide the anatomic information for a region of interest (ROI); PET and SPECT can provide functional information for the ROI. BLI and FMI can provide optical information for an ROI. Tumor angiogenesis and relevant drug development is a lengthy, high-risk, and costly process, in which a novel drug needs about 10–15 years of testing to obtain Federal Drug Association (FDA) approval. Molecular imaging can enhance the development process by understanding the tumor mechanisms and drug activity. In this paper, we focus on tumor angiogenesis, and we review the characteristics of molecular imaging modalities and their applications in tumor angiogenesis and relevant drug research. |
---|