Cargando…

Monoubiquitinated Fanconi Anemia D2 (FANCD2-Ub) Is Required for BCR-ABL1 Kinase -Induced Leukemogenesis

Fanconi D2 (FANCD2) is monoubiquitinated on K561 (FANCD2-Ub) in response to DNA double-strand breaks (DSBs) to stimulate repair of these potentially lethal DNA lesions. FANCD2-Ub was upregulated in CD34+ chronic myeloid leukemia (CML) cells and in BCR-ABL1 kinase –positive cell lines in response to...

Descripción completa

Detalles Bibliográficos
Autores principales: Koptyra, Mateusz, Stoklosa, Tomasz, Hoser, Grazyna, Glodkowska-Mrowka, Eliza, Seferynska, Ilona, Klejman, Agata, Blasiak, Janusz, Skorski, Tomasz
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3145022/
https://www.ncbi.nlm.nih.gov/pubmed/21519342
http://dx.doi.org/10.1038/leu.2011.91
Descripción
Sumario:Fanconi D2 (FANCD2) is monoubiquitinated on K561 (FANCD2-Ub) in response to DNA double-strand breaks (DSBs) to stimulate repair of these potentially lethal DNA lesions. FANCD2-Ub was upregulated in CD34+ chronic myeloid leukemia (CML) cells and in BCR-ABL1 kinase –positive cell lines in response to elevated levels of reactive oxygen species (ROS) and DNA cross-linking agent mitomycin C. Downregulation of FANCD2 and inhibition of FANCD2-Ub reduced the clonogenic potential of CD34+ CML cells and delayed BCR-ABL1 leukemogenesis in mice. Retarded proliferation of BCR-ABL1 -positive FANCD2−/− leukemia cells could be rescued by FANCD2 expression. BCR-ABL1 –positive FANCD2−/− cells accumulated more ROS-induced DSBs in comparison to BCR-ABL1 –positive FANCD2+/+ cells. Antioxidants diminished the number of DSBs and enhanced proliferation of BCR-ABL1 –positive FANCD2−/− cells. Expression of wild-type FANCD2 and FANCD2(S222A) phosphorylation-defective mutant (deficient in stimulation of intra-S phase checkpoint but proficient in DSB repair), but not FANCD2(K561R) monoubiquitination-defective mutant (proficient in stimulation of intra-S phase checkpoint but deficient in DSB repair) reduced the number of DSBs and facilitated proliferation of BCR-ABL1 –positive FANCD2−/− cells. We hypothesize that FANCD2-Ub plays an important role in BCR-ABL1 leukemogenesis due to its ability to facilitate the repair of numerous ROS-induced DSBs.