Cargando…

Immunohistochemical study on the expression of calcium binding proteins (calbindin-D28k, calretinin, and parvalbumin) in the cerebral cortex and in the hippocampal region of nNOS knock-out(-/-) mice

Nitric oxide (NO) modulates the activities of various channels and receptors to participate in the regulation of neuronal intracellular Ca(2+) levels. Ca(2+) binding protein (CaBP) expression may also be altered by NO. Accordingly, we examined expression changes in calbindin-D28k, calretinin, and pa...

Descripción completa

Detalles Bibliográficos
Autores principales: Cho, Yu Jin, Lee, Jae Chul, Kang, Bong Gu, An, Jaeyeol, Song, Hyeon Suk, Son, Onju, Nam, Do-Hyun, Cha, Choong Ik, Joo, Kyeung Min
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Korean Association of Anatomists 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3145839/
https://www.ncbi.nlm.nih.gov/pubmed/21829754
http://dx.doi.org/10.5115/acb.2011.44.2.106
Descripción
Sumario:Nitric oxide (NO) modulates the activities of various channels and receptors to participate in the regulation of neuronal intracellular Ca(2+) levels. Ca(2+) binding protein (CaBP) expression may also be altered by NO. Accordingly, we examined expression changes in calbindin-D28k, calretinin, and parvalbumin in the cerebral cortex and hippocampal region of neuronal NO synthase knockout(-/-) (nNOS(-/-)) mice using immunohistochemistry. For the first time, we demonstrate that the expression of CaBPs is specifically altered in the cerebral cortex and hippocampal region of nNOS(-/-) mice and that their expression changed according to neuronal type. As changes in CaBP expression can influence temporal and spatial intracellular Ca(2+) levels, it appears that NO may be involved in various functions, such as modulating neuronal Ca(2+) homeostasis, regulating synaptic transmission, and neuroprotection, by influencing the expression of CaBPs. Therefore, these results suggest another mechanism by which NO participates in the regulation of neuronal Ca(2+) homeostasis. However, the exact mechanisms of this regulation and its functional significance require further investigation.