Cargando…
Immunohistochemical study on the expression of calcium binding proteins (calbindin-D28k, calretinin, and parvalbumin) in the cerebral cortex and in the hippocampal region of nNOS knock-out(-/-) mice
Nitric oxide (NO) modulates the activities of various channels and receptors to participate in the regulation of neuronal intracellular Ca(2+) levels. Ca(2+) binding protein (CaBP) expression may also be altered by NO. Accordingly, we examined expression changes in calbindin-D28k, calretinin, and pa...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korean Association of Anatomists
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3145839/ https://www.ncbi.nlm.nih.gov/pubmed/21829754 http://dx.doi.org/10.5115/acb.2011.44.2.106 |
Sumario: | Nitric oxide (NO) modulates the activities of various channels and receptors to participate in the regulation of neuronal intracellular Ca(2+) levels. Ca(2+) binding protein (CaBP) expression may also be altered by NO. Accordingly, we examined expression changes in calbindin-D28k, calretinin, and parvalbumin in the cerebral cortex and hippocampal region of neuronal NO synthase knockout(-/-) (nNOS(-/-)) mice using immunohistochemistry. For the first time, we demonstrate that the expression of CaBPs is specifically altered in the cerebral cortex and hippocampal region of nNOS(-/-) mice and that their expression changed according to neuronal type. As changes in CaBP expression can influence temporal and spatial intracellular Ca(2+) levels, it appears that NO may be involved in various functions, such as modulating neuronal Ca(2+) homeostasis, regulating synaptic transmission, and neuroprotection, by influencing the expression of CaBPs. Therefore, these results suggest another mechanism by which NO participates in the regulation of neuronal Ca(2+) homeostasis. However, the exact mechanisms of this regulation and its functional significance require further investigation. |
---|