Cargando…
Genome-wide deficiency screen for the genomic regions responsible for heat resistance in Drosophila melanogaster
BACKGROUND: Temperature adaptation is one of the most important determinants of distribution and population size of organisms in nature. Recently, quantitative trait loci (QTL) mapping and gene expression profiling approaches have been used for detecting candidate genes for heat resistance. However,...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3146426/ https://www.ncbi.nlm.nih.gov/pubmed/21696597 http://dx.doi.org/10.1186/1471-2156-12-57 |
_version_ | 1782209206632316928 |
---|---|
author | Takahashi, Kazuo H Okada, Yasukazu Teramura, Kouhei |
author_facet | Takahashi, Kazuo H Okada, Yasukazu Teramura, Kouhei |
author_sort | Takahashi, Kazuo H |
collection | PubMed |
description | BACKGROUND: Temperature adaptation is one of the most important determinants of distribution and population size of organisms in nature. Recently, quantitative trait loci (QTL) mapping and gene expression profiling approaches have been used for detecting candidate genes for heat resistance. However, the resolution of QTL mapping is not high enough to examine the individual effects of various genes in each QTL. Heat stress-responsive genes, characterized by gene expression profiling studies, are not necessarily responsible for heat resistance. Some of these genes may be regulated in association with the heat stress response of other genes. RESULTS: To evaluate which heat-responsive genes are potential candidates for heat resistance with higher resolution than previous QTL mapping studies, we performed genome-wide deficiency screen for QTL for heat resistance. We screened 439 isogenic deficiency strains from the DrosDel project, covering 65.6% of the Drosophila melanogaster genome in order to map QTL for thermal resistance. As a result, we found 19 QTL for heat resistance, including 3 novel QTL outside the QTL found in previous studies. CONCLUSION: The QTL found in this study encompassed 19 heat-responsive genes found in the previous gene expression profiling studies, suggesting that they were strong candidates for heat resistance. This result provides new insights into the genetic architecture of heat resistance. It also emphasizes the advantages of genome-wide deficiency screen using isogenic deficiency libraries. |
format | Online Article Text |
id | pubmed-3146426 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-31464262011-07-30 Genome-wide deficiency screen for the genomic regions responsible for heat resistance in Drosophila melanogaster Takahashi, Kazuo H Okada, Yasukazu Teramura, Kouhei BMC Genet Research Article BACKGROUND: Temperature adaptation is one of the most important determinants of distribution and population size of organisms in nature. Recently, quantitative trait loci (QTL) mapping and gene expression profiling approaches have been used for detecting candidate genes for heat resistance. However, the resolution of QTL mapping is not high enough to examine the individual effects of various genes in each QTL. Heat stress-responsive genes, characterized by gene expression profiling studies, are not necessarily responsible for heat resistance. Some of these genes may be regulated in association with the heat stress response of other genes. RESULTS: To evaluate which heat-responsive genes are potential candidates for heat resistance with higher resolution than previous QTL mapping studies, we performed genome-wide deficiency screen for QTL for heat resistance. We screened 439 isogenic deficiency strains from the DrosDel project, covering 65.6% of the Drosophila melanogaster genome in order to map QTL for thermal resistance. As a result, we found 19 QTL for heat resistance, including 3 novel QTL outside the QTL found in previous studies. CONCLUSION: The QTL found in this study encompassed 19 heat-responsive genes found in the previous gene expression profiling studies, suggesting that they were strong candidates for heat resistance. This result provides new insights into the genetic architecture of heat resistance. It also emphasizes the advantages of genome-wide deficiency screen using isogenic deficiency libraries. BioMed Central 2011-06-22 /pmc/articles/PMC3146426/ /pubmed/21696597 http://dx.doi.org/10.1186/1471-2156-12-57 Text en Copyright ©2011 Takahashi et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Takahashi, Kazuo H Okada, Yasukazu Teramura, Kouhei Genome-wide deficiency screen for the genomic regions responsible for heat resistance in Drosophila melanogaster |
title | Genome-wide deficiency screen for the genomic regions responsible for heat resistance in Drosophila melanogaster |
title_full | Genome-wide deficiency screen for the genomic regions responsible for heat resistance in Drosophila melanogaster |
title_fullStr | Genome-wide deficiency screen for the genomic regions responsible for heat resistance in Drosophila melanogaster |
title_full_unstemmed | Genome-wide deficiency screen for the genomic regions responsible for heat resistance in Drosophila melanogaster |
title_short | Genome-wide deficiency screen for the genomic regions responsible for heat resistance in Drosophila melanogaster |
title_sort | genome-wide deficiency screen for the genomic regions responsible for heat resistance in drosophila melanogaster |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3146426/ https://www.ncbi.nlm.nih.gov/pubmed/21696597 http://dx.doi.org/10.1186/1471-2156-12-57 |
work_keys_str_mv | AT takahashikazuoh genomewidedeficiencyscreenforthegenomicregionsresponsibleforheatresistanceindrosophilamelanogaster AT okadayasukazu genomewidedeficiencyscreenforthegenomicregionsresponsibleforheatresistanceindrosophilamelanogaster AT teramurakouhei genomewidedeficiencyscreenforthegenomicregionsresponsibleforheatresistanceindrosophilamelanogaster |