Cargando…

Endothelium-Derived Netrin-4 Supports Pancreatic Epithelial Cell Adhesion and Differentiation through Integrins α2β1 and α3β1

BACKGROUND: Netrins have been extensively studied in the developing central nervous system as pathfinding guidance cues, and more recently in non-neural tissues where they mediate cell adhesion, migration and differentiation. Netrin-4, a distant relative of Netrins 1–3, has been proposed to affect c...

Descripción completa

Detalles Bibliográficos
Autores principales: Yebra, Mayra, Diaferia, Giuseppe R., Montgomery, Anthony M. P., Kaido, Thomas, Brunken, William J., Koch, Manuel, Hardiman, Gary, Crisa, Laura, Cirulli, Vincenzo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3146510/
https://www.ncbi.nlm.nih.gov/pubmed/21829502
http://dx.doi.org/10.1371/journal.pone.0022750
Descripción
Sumario:BACKGROUND: Netrins have been extensively studied in the developing central nervous system as pathfinding guidance cues, and more recently in non-neural tissues where they mediate cell adhesion, migration and differentiation. Netrin-4, a distant relative of Netrins 1–3, has been proposed to affect cell fate determination in developing epithelia, though receptors mediating these functions have yet to be identified. METHODOLOGY/PRINCIPAL FINDINGS: Using human embryonic pancreatic cells as a model of developing epithelium, here we report that Netrin-4 is abundantly expressed in vascular endothelial cells and pancreatic ductal cells, and supports epithelial cell adhesion through integrins α2β1and α3β1. Interestingly, we find that Netrin-4 recognition by embryonic pancreatic cells through integrins α2β1 and α3β1 promotes insulin and glucagon gene expression. In addition, full genome microarray analysis revealed that fetal pancreatic cell adhesion to Netrin-4 causes a prominent down-regulation of cyclins and up-regulation of negative regulators of the cell cycle. Consistent with these results, a number of other genes whose activities have been linked to developmental decisions and/or cellular differentiation are up-regulated. CONCLUSIONS/SIGNIFICANCE: Given the recognized function of blood vessels in epithelial tissue morphogenesis, our results provide a mechanism by which endothelial-derived Netrin-4 may function as a pro-differentiation cue for adjacent developing pancreatic cell populations expressing adhesion receptors α2β1 and α3β1 integrins.