Cargando…
Dynamics of capillary infiltration of liquids into a highly aligned multi-walled carbon nanotube film
The physical compatibility of a highly aligned carbon nanotube (HACNT) film with liquids was established using a fast and convenient experimental protocol. Two parameters were found to be decisive for the infiltration process. For a given density of nanotube packing, the thermodynamics of the infilt...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Beilstein-Institut
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3148039/ https://www.ncbi.nlm.nih.gov/pubmed/21977444 http://dx.doi.org/10.3762/bjnano.2.36 |
Sumario: | The physical compatibility of a highly aligned carbon nanotube (HACNT) film with liquids was established using a fast and convenient experimental protocol. Two parameters were found to be decisive for the infiltration process. For a given density of nanotube packing, the thermodynamics of the infiltration process (wettability) were described by the contact angle between the nanotube wall and a liquid meniscus (θ). Once the wettability criterion (θ < 90°) was met, the HACNT film (of free volume equal to 91%) was penetrated gradually by the liquid in a rate that can be linearly correlated to dynamic viscosity of the liquid (η). The experimental results follow the classical theory of capillarity for a steady process (Lucas–Washburn law), where the nanoscale capillary force, here supported by gravity, is compensated by viscous drag. This most general theory of capillarity can be applied in a prediction of both wettability of HACNT films and the dynamics of capillary rise in the intertube space in various technological applications. |
---|