Cargando…
Development of a 950-gene DNA array for examining gene expression patterns in mouse testis
BACKGROUND: Over the past five years, interest in and use of DNA array technology has increased dramatically, and there has been a surge in demand for different types of arrays. Although manufacturers offer a number of pre-made arrays, these are generally of utilitarian design and often cannot accom...
Autores principales: | , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2001
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC31483/ https://www.ncbi.nlm.nih.gov/pubmed/11305942 |
Sumario: | BACKGROUND: Over the past five years, interest in and use of DNA array technology has increased dramatically, and there has been a surge in demand for different types of arrays. Although manufacturers offer a number of pre-made arrays, these are generally of utilitarian design and often cannot accommodate the specific requirements of focused research, such as a particular set of genes from a particular tissue. We found that suppliers did not provide an array to suit our particular interest in testicular toxicology, and therefore elected to design and produce our own. RESULTS: We describe the procedures used by members of the US Environmental Protection Agency MicroArray Consortium (EPAMAC) to produce a mouse testis expression array on both filter and glass-slide formats. The approaches used in the selection and assembly of a pertinent, nonredundant list of testis-expressed genes are detailed. Hybridization of the filter arrays with normal and bromochloroacetic acid-treated mouse testicular RNAs demonstrated that all the selected genes on the array were expressed in mouse testes. CONCLUSION: We have assembled two lists of mouse (950) and human (960) genes expressed in the mouse and/or human adult testis, essentially all of which are available as sequence-verified clones from public sources. Of these, 764 are homologous and will therefore enable close comparison of gene expression between murine models and human clinical testicular samples. |
---|