Cargando…

Rotavirus infection activates the UPR but modulates its activity

BACKGROUND: Rotaviruses are known to modulate the innate antiviral defense response driven by IFN. The purpose of this study was to identify changes in the cellular proteome in response to rotavirus infection in the context of the IFN response. We also sought to identify proteins outside the IFN ind...

Descripción completa

Detalles Bibliográficos
Autores principales: Zambrano, Jose Luis, Ettayebi, Khalil, Maaty, Walid S, Faunce, Nicholas R, Bothner, Brian, Hardy, Michele E
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3149005/
https://www.ncbi.nlm.nih.gov/pubmed/21774819
http://dx.doi.org/10.1186/1743-422X-8-359
Descripción
Sumario:BACKGROUND: Rotaviruses are known to modulate the innate antiviral defense response driven by IFN. The purpose of this study was to identify changes in the cellular proteome in response to rotavirus infection in the context of the IFN response. We also sought to identify proteins outside the IFN induction and signaling pathway that were modulated by rotavirus infection. METHODS: 2D-DIGE and image analysis were used to identify cellular proteins that changed in levels of expression in response to rotavirus infection, IFN treatment, or IFN treatment prior to infection. Immunofluorescence microscopy was used to determine the subcellular localization of proteins associated with the unfolded protein response (UPR). RESULTS: The data show changes in the levels of multiple proteins associated with cellular stress in infected cells, including levels of ER chaperones GRP78 and GRP94. Further investigations showed that GRP78, GRP94 and other proteins with roles in the ER-initiated UPR including PERK, CHOP and GADD34, were localized to viroplasms in infected cells. CONCLUSIONS: Together the results suggest rotavirus infection activates the UPR, but modulates its effects by sequestering sensor, transcription factor, and effector proteins in viroplasms. The data consequently also suggest that viroplasms may directly or indirectly play a fundamental role in regulating signaling pathways associated with cellular defense responses.