Cargando…

Interhemispheric integration in visual search

The search task of Luck, Hillyard, Mangun and Gazzaniga (1989) was optimised to test for the presence of a bilateral field advantage in the visual search capabilities of normal subjects. The modified design used geometrically regular arrays of 2, 4 or 8 items restricted to hemifields delineated by t...

Descripción completa

Detalles Bibliográficos
Autor principal: Shipp, Stewart
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Pergamon Press 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3149659/
https://www.ncbi.nlm.nih.gov/pubmed/21640738
http://dx.doi.org/10.1016/j.neuropsychologia.2011.05.011
_version_ 1782209483863228416
author Shipp, Stewart
author_facet Shipp, Stewart
author_sort Shipp, Stewart
collection PubMed
description The search task of Luck, Hillyard, Mangun and Gazzaniga (1989) was optimised to test for the presence of a bilateral field advantage in the visual search capabilities of normal subjects. The modified design used geometrically regular arrays of 2, 4 or 8 items restricted to hemifields delineated by the vertical or horizontal meridian; the target, if present, appeared at one of two fixed positions per quadrant at an eccentricity of 11 deg. Group and individual performance data were analysed in terms of the slope of response time against display-size functions (‘RT slope’). Averaging performance across all conditions save display mode (bilateral vs. unilateral) revealed a significant bilateral advantage in the form of a 21% increase in apparent item scanning speed for target detection; in the absence of a target, bilateral displays gave a 5% increase in speed that was not significant. Factor analysis by ANOVA confirmed this main effect of display mode, and also revealed several higher order interactions with display geometry, indicating that the bilateral advantage was masked at certain target positions by a crowding-like effect. In a numerical model of search efficiency (i.e. RT slope), bilateral advantage was parameterised by an interhemispheric ‘transfer factor’ (T) that governs the strength of the ipsilateral representation of distractors, and modifies the level of intrahemispheric competition with the target. The factor T was found to be higher in superior field than inferior field; this result held for the modelled data of each individual subject, as well as the group, representing a uniform tendency for the bilateral advantage to be more prominent in inferior field. In fact statistical analysis and modelling of search efficiency showed that the geometrical display factors (target polar and quadrantic location, and associated crowding effects) were all remarkably consistent across subjects. Greater variability was inferred within a fixed, decisional component of response time, with individual subjects capable of opposite hemifield biases. The results are interpretable by a guided search model of spatial attention – a first, parallel stage guiding selection by a second, serial stage – with the proviso that the first stage is relatively insular within each hemisphere. The bilateral advantage in search efficiency can then be attributed to a relative gain in target weight within the initial parallel stage, owing to a reduction in distractor competition mediated specifically by intrahemispheric circuitry. In the absence of a target there is no effective guidance, and hence no basis for a bilateral advantage to enhance search efficiency; the equivalence of scanning speed for the two display modes (bilateral and unilateral) implies a unitary second-stage process mediated via efficient interhemispheric integration.
format Online
Article
Text
id pubmed-3149659
institution National Center for Biotechnology Information
language English
publishDate 2011
publisher Pergamon Press
record_format MEDLINE/PubMed
spelling pubmed-31496592011-09-29 Interhemispheric integration in visual search Shipp, Stewart Neuropsychologia Article The search task of Luck, Hillyard, Mangun and Gazzaniga (1989) was optimised to test for the presence of a bilateral field advantage in the visual search capabilities of normal subjects. The modified design used geometrically regular arrays of 2, 4 or 8 items restricted to hemifields delineated by the vertical or horizontal meridian; the target, if present, appeared at one of two fixed positions per quadrant at an eccentricity of 11 deg. Group and individual performance data were analysed in terms of the slope of response time against display-size functions (‘RT slope’). Averaging performance across all conditions save display mode (bilateral vs. unilateral) revealed a significant bilateral advantage in the form of a 21% increase in apparent item scanning speed for target detection; in the absence of a target, bilateral displays gave a 5% increase in speed that was not significant. Factor analysis by ANOVA confirmed this main effect of display mode, and also revealed several higher order interactions with display geometry, indicating that the bilateral advantage was masked at certain target positions by a crowding-like effect. In a numerical model of search efficiency (i.e. RT slope), bilateral advantage was parameterised by an interhemispheric ‘transfer factor’ (T) that governs the strength of the ipsilateral representation of distractors, and modifies the level of intrahemispheric competition with the target. The factor T was found to be higher in superior field than inferior field; this result held for the modelled data of each individual subject, as well as the group, representing a uniform tendency for the bilateral advantage to be more prominent in inferior field. In fact statistical analysis and modelling of search efficiency showed that the geometrical display factors (target polar and quadrantic location, and associated crowding effects) were all remarkably consistent across subjects. Greater variability was inferred within a fixed, decisional component of response time, with individual subjects capable of opposite hemifield biases. The results are interpretable by a guided search model of spatial attention – a first, parallel stage guiding selection by a second, serial stage – with the proviso that the first stage is relatively insular within each hemisphere. The bilateral advantage in search efficiency can then be attributed to a relative gain in target weight within the initial parallel stage, owing to a reduction in distractor competition mediated specifically by intrahemispheric circuitry. In the absence of a target there is no effective guidance, and hence no basis for a bilateral advantage to enhance search efficiency; the equivalence of scanning speed for the two display modes (bilateral and unilateral) implies a unitary second-stage process mediated via efficient interhemispheric integration. Pergamon Press 2011-07 /pmc/articles/PMC3149659/ /pubmed/21640738 http://dx.doi.org/10.1016/j.neuropsychologia.2011.05.011 Text en © 2011 Elsevier Ltd. https://creativecommons.org/licenses/by/3.0/ Open Access under CC BY 3.0 (https://creativecommons.org/licenses/by/3.0/) license
spellingShingle Article
Shipp, Stewart
Interhemispheric integration in visual search
title Interhemispheric integration in visual search
title_full Interhemispheric integration in visual search
title_fullStr Interhemispheric integration in visual search
title_full_unstemmed Interhemispheric integration in visual search
title_short Interhemispheric integration in visual search
title_sort interhemispheric integration in visual search
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3149659/
https://www.ncbi.nlm.nih.gov/pubmed/21640738
http://dx.doi.org/10.1016/j.neuropsychologia.2011.05.011
work_keys_str_mv AT shippstewart interhemisphericintegrationinvisualsearch