Cargando…

Detection of transgene in early developmental stage by GFP monitoring enhances the efficiency of genetic transformation of pepper

In order to establish a reliable and highly efficient method for genetic transformation of pepper, a monitoring system featuring GFP (green fluorescent protein) as a report marker was applied to Agrobacterium-mediated transformation. A callus-induced transformation (CIT) system was used to transform...

Descripción completa

Detalles Bibliográficos
Autores principales: Jung, Min, Shin, Sun Hee, Park, Jeong Mi, Lee, Sung Nam, Lee, Mi Yeon, Ryu, Ki Hyun, Paek, Kee Yoeup, Harn, Chee Hark
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Japan 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3150808/
https://www.ncbi.nlm.nih.gov/pubmed/21837254
http://dx.doi.org/10.1007/s11816-011-0168-1
Descripción
Sumario:In order to establish a reliable and highly efficient method for genetic transformation of pepper, a monitoring system featuring GFP (green fluorescent protein) as a report marker was applied to Agrobacterium-mediated transformation. A callus-induced transformation (CIT) system was used to transform the GFP gene. GFP expression was observed in all tissues of T(0), T(1) and T(2) peppers, constituting the first instance in which the whole pepper plant has exhibited GFP fluorescence. A total of 38 T(0) peppers were obtained from 4,200 explants. The transformation rate ranged from 0.47 to 1.83% depending on the genotype, which was higher than that obtained by CIT without the GFP monitoring system. This technique could enhance selection power by monitoring GFP expression at the early stage of callus in vitro. The detection of GFP expression in the callus led to successful identification of the shoot that contained the transgene. Thus, this technique saved lots of time and money for conducting the genetic transformation process of pepper. In addition, a co-transformation technique was applied to the target transgene, CaCS (encoding capsaicinoid synthetase of Capsicum) along with GFP. Paprika varieties were transformed by the CaCS::GFP construct, and GFP expression in callus tissues of paprika was monitored to select the right transformant.