Cargando…
Curcumin Modulates Nuclear Factor κB (NF-κB)-mediated Inflammation in Human Tenocytes in Vitro: ROLE OF THE PHOSPHATIDYLINOSITOL 3-KINASE/Akt PATHWAY
Inflammatory processes play essential roles in the pathogenesis of tendinitis and tendinopathy. These events are accompanied by catabolic processes initiated by pro-inflammatory cytokines such as interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α). Pharmacological treatments for tendinitis ar...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Biochemistry and Molecular Biology
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3151097/ https://www.ncbi.nlm.nih.gov/pubmed/21669872 http://dx.doi.org/10.1074/jbc.M111.256180 |
_version_ | 1782209583171764224 |
---|---|
author | Buhrmann, Constanze Mobasheri, Ali Busch, Franziska Aldinger, Constance Stahlmann, Ralf Montaseri, Azadeh Shakibaei, Mehdi |
author_facet | Buhrmann, Constanze Mobasheri, Ali Busch, Franziska Aldinger, Constance Stahlmann, Ralf Montaseri, Azadeh Shakibaei, Mehdi |
author_sort | Buhrmann, Constanze |
collection | PubMed |
description | Inflammatory processes play essential roles in the pathogenesis of tendinitis and tendinopathy. These events are accompanied by catabolic processes initiated by pro-inflammatory cytokines such as interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α). Pharmacological treatments for tendinitis are restricted to the use of non-steroidal anti-inflammatory drugs. Recent studies in various cell models have demonstrated that curcumin targets the NF-κB signaling pathway. However, its potential for the treatment of tendinitis has not been explored. Herein, we used an in vitro model of human tenocytes to study the mechanism of curcumin action on IL-1β-mediated inflammatory signaling. Curcumin at concentrations of 5–20 μm inhibited IL-1β-induced inflammation and apoptosis in cultures of human tenocytes. The anti-inflammatory effects of curcumin included down-regulation of gene products that mediate matrix degradation (matrix metalloproteinase-1, -9, and -13), prostanoid production (cyclooxygenase-2), apoptosis (Bax and activated caspase-3), and stimulation of cell survival (Bcl-2), all known to be regulated by NF-κB. Furthermore, curcumin suppressed IL-1β-induced NF-κB activation via inhibition of phosphorylation and degradation of inhibitor of κBα, inhibition of inhibitor of κB-kinase activity, and inhibition of nuclear translocation of NF-κB. Furthermore, the effects of IL-1β were abrogated by wortmannin, suggesting a role for the phosphatidylinositol 3-kinase (PI-3K) pathway in IL-1β signaling. Curcumin suppressed IL-1β-induced PI-3K p85/Akt activation and its association with IKK. These results demonstrate, for the first time, a potential role for curcumin in treating tendon inflammation through modulation of NF-κB signaling, which involves PI-3K/Akt and the tendon-specific transcription factor scleraxis in tenocytes. |
format | Online Article Text |
id | pubmed-3151097 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | American Society for Biochemistry and Molecular Biology |
record_format | MEDLINE/PubMed |
spelling | pubmed-31510972011-08-15 Curcumin Modulates Nuclear Factor κB (NF-κB)-mediated Inflammation in Human Tenocytes in Vitro: ROLE OF THE PHOSPHATIDYLINOSITOL 3-KINASE/Akt PATHWAY Buhrmann, Constanze Mobasheri, Ali Busch, Franziska Aldinger, Constance Stahlmann, Ralf Montaseri, Azadeh Shakibaei, Mehdi J Biol Chem Cell Biology Inflammatory processes play essential roles in the pathogenesis of tendinitis and tendinopathy. These events are accompanied by catabolic processes initiated by pro-inflammatory cytokines such as interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α). Pharmacological treatments for tendinitis are restricted to the use of non-steroidal anti-inflammatory drugs. Recent studies in various cell models have demonstrated that curcumin targets the NF-κB signaling pathway. However, its potential for the treatment of tendinitis has not been explored. Herein, we used an in vitro model of human tenocytes to study the mechanism of curcumin action on IL-1β-mediated inflammatory signaling. Curcumin at concentrations of 5–20 μm inhibited IL-1β-induced inflammation and apoptosis in cultures of human tenocytes. The anti-inflammatory effects of curcumin included down-regulation of gene products that mediate matrix degradation (matrix metalloproteinase-1, -9, and -13), prostanoid production (cyclooxygenase-2), apoptosis (Bax and activated caspase-3), and stimulation of cell survival (Bcl-2), all known to be regulated by NF-κB. Furthermore, curcumin suppressed IL-1β-induced NF-κB activation via inhibition of phosphorylation and degradation of inhibitor of κBα, inhibition of inhibitor of κB-kinase activity, and inhibition of nuclear translocation of NF-κB. Furthermore, the effects of IL-1β were abrogated by wortmannin, suggesting a role for the phosphatidylinositol 3-kinase (PI-3K) pathway in IL-1β signaling. Curcumin suppressed IL-1β-induced PI-3K p85/Akt activation and its association with IKK. These results demonstrate, for the first time, a potential role for curcumin in treating tendon inflammation through modulation of NF-κB signaling, which involves PI-3K/Akt and the tendon-specific transcription factor scleraxis in tenocytes. American Society for Biochemistry and Molecular Biology 2011-08-12 2011-06-13 /pmc/articles/PMC3151097/ /pubmed/21669872 http://dx.doi.org/10.1074/jbc.M111.256180 Text en © 2011 by The American Society for Biochemistry and Molecular Biology, Inc. Author's Choice—Final version full access. Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) applies to Author Choice Articles |
spellingShingle | Cell Biology Buhrmann, Constanze Mobasheri, Ali Busch, Franziska Aldinger, Constance Stahlmann, Ralf Montaseri, Azadeh Shakibaei, Mehdi Curcumin Modulates Nuclear Factor κB (NF-κB)-mediated Inflammation in Human Tenocytes in Vitro: ROLE OF THE PHOSPHATIDYLINOSITOL 3-KINASE/Akt PATHWAY |
title | Curcumin Modulates Nuclear Factor κB (NF-κB)-mediated Inflammation in Human Tenocytes in Vitro: ROLE OF THE PHOSPHATIDYLINOSITOL 3-KINASE/Akt PATHWAY |
title_full | Curcumin Modulates Nuclear Factor κB (NF-κB)-mediated Inflammation in Human Tenocytes in Vitro: ROLE OF THE PHOSPHATIDYLINOSITOL 3-KINASE/Akt PATHWAY |
title_fullStr | Curcumin Modulates Nuclear Factor κB (NF-κB)-mediated Inflammation in Human Tenocytes in Vitro: ROLE OF THE PHOSPHATIDYLINOSITOL 3-KINASE/Akt PATHWAY |
title_full_unstemmed | Curcumin Modulates Nuclear Factor κB (NF-κB)-mediated Inflammation in Human Tenocytes in Vitro: ROLE OF THE PHOSPHATIDYLINOSITOL 3-KINASE/Akt PATHWAY |
title_short | Curcumin Modulates Nuclear Factor κB (NF-κB)-mediated Inflammation in Human Tenocytes in Vitro: ROLE OF THE PHOSPHATIDYLINOSITOL 3-KINASE/Akt PATHWAY |
title_sort | curcumin modulates nuclear factor κb (nf-κb)-mediated inflammation in human tenocytes in vitro: role of the phosphatidylinositol 3-kinase/akt pathway |
topic | Cell Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3151097/ https://www.ncbi.nlm.nih.gov/pubmed/21669872 http://dx.doi.org/10.1074/jbc.M111.256180 |
work_keys_str_mv | AT buhrmannconstanze curcuminmodulatesnuclearfactorkbnfkbmediatedinflammationinhumantenocytesinvitroroleofthephosphatidylinositol3kinaseaktpathway AT mobasheriali curcuminmodulatesnuclearfactorkbnfkbmediatedinflammationinhumantenocytesinvitroroleofthephosphatidylinositol3kinaseaktpathway AT buschfranziska curcuminmodulatesnuclearfactorkbnfkbmediatedinflammationinhumantenocytesinvitroroleofthephosphatidylinositol3kinaseaktpathway AT aldingerconstance curcuminmodulatesnuclearfactorkbnfkbmediatedinflammationinhumantenocytesinvitroroleofthephosphatidylinositol3kinaseaktpathway AT stahlmannralf curcuminmodulatesnuclearfactorkbnfkbmediatedinflammationinhumantenocytesinvitroroleofthephosphatidylinositol3kinaseaktpathway AT montaseriazadeh curcuminmodulatesnuclearfactorkbnfkbmediatedinflammationinhumantenocytesinvitroroleofthephosphatidylinositol3kinaseaktpathway AT shakibaeimehdi curcuminmodulatesnuclearfactorkbnfkbmediatedinflammationinhumantenocytesinvitroroleofthephosphatidylinositol3kinaseaktpathway |