Cargando…
The re-identification risk of Canadians from longitudinal demographics
BACKGROUND: The public is less willing to allow their personal health information to be disclosed for research purposes if they do not trust researchers and how researchers manage their data. However, the public is more comfortable with their data being used for research if the risk of re-identifica...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3151203/ https://www.ncbi.nlm.nih.gov/pubmed/21696636 http://dx.doi.org/10.1186/1472-6947-11-46 |
_version_ | 1782209585195515904 |
---|---|
author | El Emam, Khaled Buckeridge, David Tamblyn, Robyn Neisa, Angelica Jonker, Elizabeth Verma, Aman |
author_facet | El Emam, Khaled Buckeridge, David Tamblyn, Robyn Neisa, Angelica Jonker, Elizabeth Verma, Aman |
author_sort | El Emam, Khaled |
collection | PubMed |
description | BACKGROUND: The public is less willing to allow their personal health information to be disclosed for research purposes if they do not trust researchers and how researchers manage their data. However, the public is more comfortable with their data being used for research if the risk of re-identification is low. There are few studies on the risk of re-identification of Canadians from their basic demographics, and no studies on their risk from their longitudinal data. Our objective was to estimate the risk of re-identification from the basic cross-sectional and longitudinal demographics of Canadians. METHODS: Uniqueness is a common measure of re-identification risk. Demographic data on a 25% random sample of the population of Montreal were analyzed to estimate population uniqueness on postal code, date of birth, and gender as well as their generalizations, for periods ranging from 1 year to 11 years. RESULTS: Almost 98% of the population was unique on full postal code, date of birth and gender: these three variables are effectively a unique identifier for Montrealers. Uniqueness increased for longitudinal data. Considerable generalization was required to reach acceptably low uniqueness levels, especially for longitudinal data. Detailed guidelines and disclosure policies on how to ensure that the re-identification risk is low are provided. CONCLUSIONS: A large percentage of Montreal residents are unique on basic demographics. For non-longitudinal data sets, the three character postal code, gender, and month/year of birth represent sufficiently low re-identification risk. Data custodians need to generalize their demographic information further for longitudinal data sets. |
format | Online Article Text |
id | pubmed-3151203 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-31512032011-08-06 The re-identification risk of Canadians from longitudinal demographics El Emam, Khaled Buckeridge, David Tamblyn, Robyn Neisa, Angelica Jonker, Elizabeth Verma, Aman BMC Med Inform Decis Mak Research Article BACKGROUND: The public is less willing to allow their personal health information to be disclosed for research purposes if they do not trust researchers and how researchers manage their data. However, the public is more comfortable with their data being used for research if the risk of re-identification is low. There are few studies on the risk of re-identification of Canadians from their basic demographics, and no studies on their risk from their longitudinal data. Our objective was to estimate the risk of re-identification from the basic cross-sectional and longitudinal demographics of Canadians. METHODS: Uniqueness is a common measure of re-identification risk. Demographic data on a 25% random sample of the population of Montreal were analyzed to estimate population uniqueness on postal code, date of birth, and gender as well as their generalizations, for periods ranging from 1 year to 11 years. RESULTS: Almost 98% of the population was unique on full postal code, date of birth and gender: these three variables are effectively a unique identifier for Montrealers. Uniqueness increased for longitudinal data. Considerable generalization was required to reach acceptably low uniqueness levels, especially for longitudinal data. Detailed guidelines and disclosure policies on how to ensure that the re-identification risk is low are provided. CONCLUSIONS: A large percentage of Montreal residents are unique on basic demographics. For non-longitudinal data sets, the three character postal code, gender, and month/year of birth represent sufficiently low re-identification risk. Data custodians need to generalize their demographic information further for longitudinal data sets. BioMed Central 2011-06-22 /pmc/articles/PMC3151203/ /pubmed/21696636 http://dx.doi.org/10.1186/1472-6947-11-46 Text en Copyright ©2011 El Emam et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article El Emam, Khaled Buckeridge, David Tamblyn, Robyn Neisa, Angelica Jonker, Elizabeth Verma, Aman The re-identification risk of Canadians from longitudinal demographics |
title | The re-identification risk of Canadians from longitudinal demographics |
title_full | The re-identification risk of Canadians from longitudinal demographics |
title_fullStr | The re-identification risk of Canadians from longitudinal demographics |
title_full_unstemmed | The re-identification risk of Canadians from longitudinal demographics |
title_short | The re-identification risk of Canadians from longitudinal demographics |
title_sort | re-identification risk of canadians from longitudinal demographics |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3151203/ https://www.ncbi.nlm.nih.gov/pubmed/21696636 http://dx.doi.org/10.1186/1472-6947-11-46 |
work_keys_str_mv | AT elemamkhaled thereidentificationriskofcanadiansfromlongitudinaldemographics AT buckeridgedavid thereidentificationriskofcanadiansfromlongitudinaldemographics AT tamblynrobyn thereidentificationriskofcanadiansfromlongitudinaldemographics AT neisaangelica thereidentificationriskofcanadiansfromlongitudinaldemographics AT jonkerelizabeth thereidentificationriskofcanadiansfromlongitudinaldemographics AT vermaaman thereidentificationriskofcanadiansfromlongitudinaldemographics AT elemamkhaled reidentificationriskofcanadiansfromlongitudinaldemographics AT buckeridgedavid reidentificationriskofcanadiansfromlongitudinaldemographics AT tamblynrobyn reidentificationriskofcanadiansfromlongitudinaldemographics AT neisaangelica reidentificationriskofcanadiansfromlongitudinaldemographics AT jonkerelizabeth reidentificationriskofcanadiansfromlongitudinaldemographics AT vermaaman reidentificationriskofcanadiansfromlongitudinaldemographics |