Cargando…

Zim17/Tim15 links mitochondrial iron–sulfur cluster biosynthesis to nuclear genome stability

Genomic instability is related to a wide-range of human diseases. Here, we show that mitochondrial iron–sulfur cluster biosynthesis is important for the maintenance of nuclear genome stability in Saccharomyces cerevisiae. Cells lacking the mitochondrial chaperone Zim17 (Tim15/Hep1), a component of t...

Descripción completa

Detalles Bibliográficos
Autores principales: Díaz de la Loza, María del Carmen, Gallardo, Mercedes, García-Rubio, María Luisa, Izquierdo, Alicia, Herrero, Enrique, Aguilera, Andrés, Wellinger, Ralf Erik
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3152343/
https://www.ncbi.nlm.nih.gov/pubmed/21511814
http://dx.doi.org/10.1093/nar/gkr193
_version_ 1782209758217895936
author Díaz de la Loza, María del Carmen
Gallardo, Mercedes
García-Rubio, María Luisa
Izquierdo, Alicia
Herrero, Enrique
Aguilera, Andrés
Wellinger, Ralf Erik
author_facet Díaz de la Loza, María del Carmen
Gallardo, Mercedes
García-Rubio, María Luisa
Izquierdo, Alicia
Herrero, Enrique
Aguilera, Andrés
Wellinger, Ralf Erik
author_sort Díaz de la Loza, María del Carmen
collection PubMed
description Genomic instability is related to a wide-range of human diseases. Here, we show that mitochondrial iron–sulfur cluster biosynthesis is important for the maintenance of nuclear genome stability in Saccharomyces cerevisiae. Cells lacking the mitochondrial chaperone Zim17 (Tim15/Hep1), a component of the iron–sulfur biosynthesis machinery, have limited respiration activity, mimic the metabolic response to iron starvation and suffer a dramatic increase in nuclear genome recombination. Increased oxidative damage or deficient DNA repair do not account for the observed genomic hyperrecombination. Impaired cell-cycle progression and genetic interactions of ZIM17 with components of the RFC-like complex involved in mitotic checkpoints indicate that replicative stress causes hyperrecombination in zim17Δ mutants. Furthermore, nuclear accumulation of pre-ribosomal particles in zim17Δ mutants reinforces the importance of iron–sulfur clusters in normal ribosome biosynthesis. We propose that compromised ribosome biosynthesis and cell-cycle progression are interconnected, together contributing to replicative stress and nuclear genome instability in zim17Δ mutants.
format Online
Article
Text
id pubmed-3152343
institution National Center for Biotechnology Information
language English
publishDate 2011
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-31523432011-08-08 Zim17/Tim15 links mitochondrial iron–sulfur cluster biosynthesis to nuclear genome stability Díaz de la Loza, María del Carmen Gallardo, Mercedes García-Rubio, María Luisa Izquierdo, Alicia Herrero, Enrique Aguilera, Andrés Wellinger, Ralf Erik Nucleic Acids Res Genome Integrity, Repair and Replication Genomic instability is related to a wide-range of human diseases. Here, we show that mitochondrial iron–sulfur cluster biosynthesis is important for the maintenance of nuclear genome stability in Saccharomyces cerevisiae. Cells lacking the mitochondrial chaperone Zim17 (Tim15/Hep1), a component of the iron–sulfur biosynthesis machinery, have limited respiration activity, mimic the metabolic response to iron starvation and suffer a dramatic increase in nuclear genome recombination. Increased oxidative damage or deficient DNA repair do not account for the observed genomic hyperrecombination. Impaired cell-cycle progression and genetic interactions of ZIM17 with components of the RFC-like complex involved in mitotic checkpoints indicate that replicative stress causes hyperrecombination in zim17Δ mutants. Furthermore, nuclear accumulation of pre-ribosomal particles in zim17Δ mutants reinforces the importance of iron–sulfur clusters in normal ribosome biosynthesis. We propose that compromised ribosome biosynthesis and cell-cycle progression are interconnected, together contributing to replicative stress and nuclear genome instability in zim17Δ mutants. Oxford University Press 2011-08 2011-04-21 /pmc/articles/PMC3152343/ /pubmed/21511814 http://dx.doi.org/10.1093/nar/gkr193 Text en © The Author(s) 2011. Published by Oxford University Press. http://creativecommons.org/licenses/by-nc/2.5 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Genome Integrity, Repair and Replication
Díaz de la Loza, María del Carmen
Gallardo, Mercedes
García-Rubio, María Luisa
Izquierdo, Alicia
Herrero, Enrique
Aguilera, Andrés
Wellinger, Ralf Erik
Zim17/Tim15 links mitochondrial iron–sulfur cluster biosynthesis to nuclear genome stability
title Zim17/Tim15 links mitochondrial iron–sulfur cluster biosynthesis to nuclear genome stability
title_full Zim17/Tim15 links mitochondrial iron–sulfur cluster biosynthesis to nuclear genome stability
title_fullStr Zim17/Tim15 links mitochondrial iron–sulfur cluster biosynthesis to nuclear genome stability
title_full_unstemmed Zim17/Tim15 links mitochondrial iron–sulfur cluster biosynthesis to nuclear genome stability
title_short Zim17/Tim15 links mitochondrial iron–sulfur cluster biosynthesis to nuclear genome stability
title_sort zim17/tim15 links mitochondrial iron–sulfur cluster biosynthesis to nuclear genome stability
topic Genome Integrity, Repair and Replication
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3152343/
https://www.ncbi.nlm.nih.gov/pubmed/21511814
http://dx.doi.org/10.1093/nar/gkr193
work_keys_str_mv AT diazdelalozamariadelcarmen zim17tim15linksmitochondrialironsulfurclusterbiosynthesistonucleargenomestability
AT gallardomercedes zim17tim15linksmitochondrialironsulfurclusterbiosynthesistonucleargenomestability
AT garciarubiomarialuisa zim17tim15linksmitochondrialironsulfurclusterbiosynthesistonucleargenomestability
AT izquierdoalicia zim17tim15linksmitochondrialironsulfurclusterbiosynthesistonucleargenomestability
AT herreroenrique zim17tim15linksmitochondrialironsulfurclusterbiosynthesistonucleargenomestability
AT aguileraandres zim17tim15linksmitochondrialironsulfurclusterbiosynthesistonucleargenomestability
AT wellingerralferik zim17tim15linksmitochondrialironsulfurclusterbiosynthesistonucleargenomestability