Cargando…

Prognosis and Therapy When Acute Promyelocytic Leukemia and Other “Good Risk” Acute Myeloid Leukemias Occur as a Therapy-Related Myeloid Neoplasm

Treatment for a pre-existing condition using chemotherapy, radiation therapy, immunosuppressive therapy, or a combination of these modalities may lead to the devastating complication of therapy-related myelodysplastic syndrome or acute myeloid leukemia (t-MDS/t-AML), collectively known as therapy-re...

Descripción completa

Detalles Bibliográficos
Autores principales: Larson, Richard A., Le Beau, Michelle M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Università Cattolica del Sacro Cuore 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3152454/
https://www.ncbi.nlm.nih.gov/pubmed/21869918
http://dx.doi.org/10.4084/MJHID.2011.032
_version_ 1782209766515277824
author Larson, Richard A.
Le Beau, Michelle M.
author_facet Larson, Richard A.
Le Beau, Michelle M.
author_sort Larson, Richard A.
collection PubMed
description Treatment for a pre-existing condition using chemotherapy, radiation therapy, immunosuppressive therapy, or a combination of these modalities may lead to the devastating complication of therapy-related myelodysplastic syndrome or acute myeloid leukemia (t-MDS/t-AML), collectively known as therapy-related myeloid neoplasm (t-MN). This disorder arises as a direct consequence of mutational events induced by the primary treatment. The outcomes for these patients have been historically poor compared to people who develop AML de novo. Currently comprising 10–20% of all cases of AML, t-MN is relatively resistant to conventional leukemia therapies, and is associated with s ort survival times. Median life expectancy from diagnosis is about 8–10 months in most series. Although the spectrum of cytogenetic abnormalities in t-AML is similar to AML de novo, the frequency of unfavorable cytogenetics, such as a complex karyotype or deletion or loss of chromosomes 5 and/or 7, is considerably higher in t-MN. Two distinct groups of patients with t-MN have been described. The more common subtype, seen in about 75% of patients, typically occurs 5–7 years after first exposure to alkylating agents or radiation, is often preceded by a myelodysplastic syndrome (MDS), and is frequently accompanied by clonal cytogenetic abnormalities such as the loss of all or part of chromosomes 5 or 7. Mutations of the P53 tumor suppressor gene are also common. The risk is related to total cumulative exposure over time to alkylating agents. In contrast, among individuals who develop t-AML after treatment with topoisomerase II inhibitors, the latency period to the development of t-AML is often only 1–3 years, antecedent MDS is rare, and gene rearrangements involving MLL at 11q23 or RUNX1/AML1 at 21q22 are common. It is now well recognized that APL and other subtypes of AML with balanced translocations sometimes occur as therapy-related myeloid neoplasms (t-MN) in patients who have previously received cytotoxic therapy or ionizing radiation therapy (RT). The most of this review will focus on these “good risk” leukemias, i.e. those with APL or inv(16)/t(16;16) or t(8;21).
format Online
Article
Text
id pubmed-3152454
institution National Center for Biotechnology Information
language English
publishDate 2011
publisher Università Cattolica del Sacro Cuore
record_format MEDLINE/PubMed
spelling pubmed-31524542011-08-25 Prognosis and Therapy When Acute Promyelocytic Leukemia and Other “Good Risk” Acute Myeloid Leukemias Occur as a Therapy-Related Myeloid Neoplasm Larson, Richard A. Le Beau, Michelle M. Mediterr J Hematol Infect Dis Review Articles Treatment for a pre-existing condition using chemotherapy, radiation therapy, immunosuppressive therapy, or a combination of these modalities may lead to the devastating complication of therapy-related myelodysplastic syndrome or acute myeloid leukemia (t-MDS/t-AML), collectively known as therapy-related myeloid neoplasm (t-MN). This disorder arises as a direct consequence of mutational events induced by the primary treatment. The outcomes for these patients have been historically poor compared to people who develop AML de novo. Currently comprising 10–20% of all cases of AML, t-MN is relatively resistant to conventional leukemia therapies, and is associated with s ort survival times. Median life expectancy from diagnosis is about 8–10 months in most series. Although the spectrum of cytogenetic abnormalities in t-AML is similar to AML de novo, the frequency of unfavorable cytogenetics, such as a complex karyotype or deletion or loss of chromosomes 5 and/or 7, is considerably higher in t-MN. Two distinct groups of patients with t-MN have been described. The more common subtype, seen in about 75% of patients, typically occurs 5–7 years after first exposure to alkylating agents or radiation, is often preceded by a myelodysplastic syndrome (MDS), and is frequently accompanied by clonal cytogenetic abnormalities such as the loss of all or part of chromosomes 5 or 7. Mutations of the P53 tumor suppressor gene are also common. The risk is related to total cumulative exposure over time to alkylating agents. In contrast, among individuals who develop t-AML after treatment with topoisomerase II inhibitors, the latency period to the development of t-AML is often only 1–3 years, antecedent MDS is rare, and gene rearrangements involving MLL at 11q23 or RUNX1/AML1 at 21q22 are common. It is now well recognized that APL and other subtypes of AML with balanced translocations sometimes occur as therapy-related myeloid neoplasms (t-MN) in patients who have previously received cytotoxic therapy or ionizing radiation therapy (RT). The most of this review will focus on these “good risk” leukemias, i.e. those with APL or inv(16)/t(16;16) or t(8;21). Università Cattolica del Sacro Cuore 2011-07-08 /pmc/articles/PMC3152454/ /pubmed/21869918 http://dx.doi.org/10.4084/MJHID.2011.032 Text en This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Review Articles
Larson, Richard A.
Le Beau, Michelle M.
Prognosis and Therapy When Acute Promyelocytic Leukemia and Other “Good Risk” Acute Myeloid Leukemias Occur as a Therapy-Related Myeloid Neoplasm
title Prognosis and Therapy When Acute Promyelocytic Leukemia and Other “Good Risk” Acute Myeloid Leukemias Occur as a Therapy-Related Myeloid Neoplasm
title_full Prognosis and Therapy When Acute Promyelocytic Leukemia and Other “Good Risk” Acute Myeloid Leukemias Occur as a Therapy-Related Myeloid Neoplasm
title_fullStr Prognosis and Therapy When Acute Promyelocytic Leukemia and Other “Good Risk” Acute Myeloid Leukemias Occur as a Therapy-Related Myeloid Neoplasm
title_full_unstemmed Prognosis and Therapy When Acute Promyelocytic Leukemia and Other “Good Risk” Acute Myeloid Leukemias Occur as a Therapy-Related Myeloid Neoplasm
title_short Prognosis and Therapy When Acute Promyelocytic Leukemia and Other “Good Risk” Acute Myeloid Leukemias Occur as a Therapy-Related Myeloid Neoplasm
title_sort prognosis and therapy when acute promyelocytic leukemia and other “good risk” acute myeloid leukemias occur as a therapy-related myeloid neoplasm
topic Review Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3152454/
https://www.ncbi.nlm.nih.gov/pubmed/21869918
http://dx.doi.org/10.4084/MJHID.2011.032
work_keys_str_mv AT larsonricharda prognosisandtherapywhenacutepromyelocyticleukemiaandothergoodriskacutemyeloidleukemiasoccurasatherapyrelatedmyeloidneoplasm
AT lebeaumichellem prognosisandtherapywhenacutepromyelocyticleukemiaandothergoodriskacutemyeloidleukemiasoccurasatherapyrelatedmyeloidneoplasm