Cargando…

Nickel nanowires induced and reactive oxygen species mediated apoptosis in human pancreatic adenocarcinoma cells

BACKGROUND: The ability to evade apoptosis is one of the key properties of cancer. The apoptogenic effect of nickel nanowires (Ni NWs) on cancer cell lines has never been adequately addressed. Due to the unique physicochemical characteristics of Ni NWs, we envision the development of a novel antican...

Descripción completa

Detalles Bibliográficos
Autores principales: Hossain, Md. Zakir, Kleve, Maurice G
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove Medical Press 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3152467/
https://www.ncbi.nlm.nih.gov/pubmed/21845039
http://dx.doi.org/10.2147/IJN.S21697
_version_ 1782209766980845568
author Hossain, Md. Zakir
Kleve, Maurice G
author_facet Hossain, Md. Zakir
Kleve, Maurice G
author_sort Hossain, Md. Zakir
collection PubMed
description BACKGROUND: The ability to evade apoptosis is one of the key properties of cancer. The apoptogenic effect of nickel nanowires (Ni NWs) on cancer cell lines has never been adequately addressed. Due to the unique physicochemical characteristics of Ni NWs, we envision the development of a novel anticancer therapeutics specifically for pancreatic cancer. Thus, we investigated whether Ni NWs induce ROS-mediated apoptosis in human pancreatic adenocarcinoma (Panc-1) cells. METHODS: In this study Ni NWs were fabricated using the electrodeposition method. Synthesized Ni NWs were physically characterized by energy dispersive X-ray analysis, UV-Vis spectroscopy of NanoDrop 2000 (UV-Vis), magnetization study, scanning electron microscopy, and transmission electron microscopy. Assessment of morphological apoptotic characteristics by phase contrast microscopy (PCM), Ni-NWs-induced apoptosis staining with ethidium bromide (EB) and acridine orange (AO) followed by fluorescence microscopy (FM) was performed. For molecular biological and biochemical characterization, Panc-1 cell culture and cytotoxic effect of Ni NWs were determined by using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay. Quantitative apoptosis was analyzed by flow cytometry staining with propidium iodide through cell cycle arrest and generation of ROS using 2′, 7′-dichlorofluorescein diacetate fluorescence intensity. In all experiments, Panc-1 cancer cells without any treatment were used as the negative controls. RESULTS: The intracellular uptake of Ni NWs through endocytosis by Panc-1 cells was observed by PCM. EB and AO staining of FM and MTT assay qualitatively and quantitatively confirmed the extent of apoptosis. Flow cytometric cell cycle arrest and ROS generation indicated Ni NWs as inducers of apoptotic cell death. CONCLUSION: We investigated the role of Ni NWs as inducers of ROS-mediated apoptosis in Panc-1 cells. These results suggested that Ni NWs could be an effective apoptotic agent for Panc-1 cells and have good potential for further research into a clinical treatment selective for pancreatic cancer.
format Online
Article
Text
id pubmed-3152467
institution National Center for Biotechnology Information
language English
publishDate 2011
publisher Dove Medical Press
record_format MEDLINE/PubMed
spelling pubmed-31524672011-08-15 Nickel nanowires induced and reactive oxygen species mediated apoptosis in human pancreatic adenocarcinoma cells Hossain, Md. Zakir Kleve, Maurice G Int J Nanomedicine Original Research BACKGROUND: The ability to evade apoptosis is one of the key properties of cancer. The apoptogenic effect of nickel nanowires (Ni NWs) on cancer cell lines has never been adequately addressed. Due to the unique physicochemical characteristics of Ni NWs, we envision the development of a novel anticancer therapeutics specifically for pancreatic cancer. Thus, we investigated whether Ni NWs induce ROS-mediated apoptosis in human pancreatic adenocarcinoma (Panc-1) cells. METHODS: In this study Ni NWs were fabricated using the electrodeposition method. Synthesized Ni NWs were physically characterized by energy dispersive X-ray analysis, UV-Vis spectroscopy of NanoDrop 2000 (UV-Vis), magnetization study, scanning electron microscopy, and transmission electron microscopy. Assessment of morphological apoptotic characteristics by phase contrast microscopy (PCM), Ni-NWs-induced apoptosis staining with ethidium bromide (EB) and acridine orange (AO) followed by fluorescence microscopy (FM) was performed. For molecular biological and biochemical characterization, Panc-1 cell culture and cytotoxic effect of Ni NWs were determined by using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay. Quantitative apoptosis was analyzed by flow cytometry staining with propidium iodide through cell cycle arrest and generation of ROS using 2′, 7′-dichlorofluorescein diacetate fluorescence intensity. In all experiments, Panc-1 cancer cells without any treatment were used as the negative controls. RESULTS: The intracellular uptake of Ni NWs through endocytosis by Panc-1 cells was observed by PCM. EB and AO staining of FM and MTT assay qualitatively and quantitatively confirmed the extent of apoptosis. Flow cytometric cell cycle arrest and ROS generation indicated Ni NWs as inducers of apoptotic cell death. CONCLUSION: We investigated the role of Ni NWs as inducers of ROS-mediated apoptosis in Panc-1 cells. These results suggested that Ni NWs could be an effective apoptotic agent for Panc-1 cells and have good potential for further research into a clinical treatment selective for pancreatic cancer. Dove Medical Press 2011 2011-07-13 /pmc/articles/PMC3152467/ /pubmed/21845039 http://dx.doi.org/10.2147/IJN.S21697 Text en © 2011 Hossain and Kleve, publisher and licensee Dove Medical Press Ltd. This is an Open Access article which permits unrestricted noncommercial use, provided the original work is properly cited.
spellingShingle Original Research
Hossain, Md. Zakir
Kleve, Maurice G
Nickel nanowires induced and reactive oxygen species mediated apoptosis in human pancreatic adenocarcinoma cells
title Nickel nanowires induced and reactive oxygen species mediated apoptosis in human pancreatic adenocarcinoma cells
title_full Nickel nanowires induced and reactive oxygen species mediated apoptosis in human pancreatic adenocarcinoma cells
title_fullStr Nickel nanowires induced and reactive oxygen species mediated apoptosis in human pancreatic adenocarcinoma cells
title_full_unstemmed Nickel nanowires induced and reactive oxygen species mediated apoptosis in human pancreatic adenocarcinoma cells
title_short Nickel nanowires induced and reactive oxygen species mediated apoptosis in human pancreatic adenocarcinoma cells
title_sort nickel nanowires induced and reactive oxygen species mediated apoptosis in human pancreatic adenocarcinoma cells
topic Original Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3152467/
https://www.ncbi.nlm.nih.gov/pubmed/21845039
http://dx.doi.org/10.2147/IJN.S21697
work_keys_str_mv AT hossainmdzakir nickelnanowiresinducedandreactiveoxygenspeciesmediatedapoptosisinhumanpancreaticadenocarcinomacells
AT klevemauriceg nickelnanowiresinducedandreactiveoxygenspeciesmediatedapoptosisinhumanpancreaticadenocarcinomacells