Cargando…
Optimizing particle size for targeting diseased microvasculature: from experiments to artificial neural networks
BACKGROUND: Nanoparticles with different sizes, shapes, and surface properties are being developed for the early diagnosis, imaging, and treatment of a range of diseases. Identifying the optimal configuration that maximizes nanoparticle accumulation at the diseased site is of vital importance. In th...
Autores principales: | Boso, Daniela P, Lee, Sei-Young, Ferrari, Mauro, Schrefler, Bernhard A, Decuzzi, Paolo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove Medical Press
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3152469/ https://www.ncbi.nlm.nih.gov/pubmed/21845041 http://dx.doi.org/10.2147/IJN.S20283 |
Ejemplares similares
-
Machine learning instructed microfluidic synthesis of curcumin-loaded liposomes
por: Di Francesco, Valentina, et al.
Publicado: (2023) -
The margination propensity of spherical particles for vascular targeting in the microcirculation
por: Gentile, Francesco, et al.
Publicado: (2008) -
Designing Artificial Neural Networks Using Particle Swarm Optimization Algorithms
por: Garro, Beatriz A., et al.
Publicado: (2015) -
Optimized Particle Swarm Optimization (OPSO) and its application to artificial neural network training
por: Meissner, Michael, et al.
Publicado: (2006) -
Flow chamber analysis of size effects in the adhesion of spherical particles
por: Decuzzi, P, et al.
Publicado: (2007)