Cargando…
Voluntary Wheel Running Reverses Age-Induced Changes in Hippocampal Gene Expression
Normal aging alters expression of numerous genes within the brain. Some of these transcription changes likely contribute to age-associated cognitive decline, reduced neural plasticity, and the higher incidence of neuropathology. Identifying factors that modulate brain aging is crucial for improving...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3152565/ https://www.ncbi.nlm.nih.gov/pubmed/21857943 http://dx.doi.org/10.1371/journal.pone.0022654 |
_version_ | 1782209783232724992 |
---|---|
author | Kohman, Rachel A. Rodriguez-Zas, Sandra L. Southey, Bruce R. Kelley, Keith W. Dantzer, Robert Rhodes, Justin S. |
author_facet | Kohman, Rachel A. Rodriguez-Zas, Sandra L. Southey, Bruce R. Kelley, Keith W. Dantzer, Robert Rhodes, Justin S. |
author_sort | Kohman, Rachel A. |
collection | PubMed |
description | Normal aging alters expression of numerous genes within the brain. Some of these transcription changes likely contribute to age-associated cognitive decline, reduced neural plasticity, and the higher incidence of neuropathology. Identifying factors that modulate brain aging is crucial for improving quality of life. One promising intervention to counteract negative effects of aging is aerobic exercise. Aged subjects that exercise show enhanced cognitive performance and increased hippocampal neurogenesis and synaptic plasticity. Currently, the mechanisms behind the anti-aging effects of exercise are not understood. The present study conducted a microarray on whole hippocampal samples from adult (3.5-month-old) and aged (18-month-old) male BALB/c mice that were individually housed with or without running wheels for 8 weeks. Results showed that aging altered genes related to chromatin remodeling, cell growth, immune activity, and synapse organization compared to adult mice. Exercise was found to modulate many of the genes altered by aging, but in the opposite direction. For example, wheel running increased expression of genes related to cell growth and attenuated expression of genes involved in immune function and chromatin remodeling. Collectively, findings show that even late-onset exercise may attenuate age-related changes in gene expression and identifies possible pathways through which exercise may exert its beneficial effects. |
format | Online Article Text |
id | pubmed-3152565 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-31525652011-08-19 Voluntary Wheel Running Reverses Age-Induced Changes in Hippocampal Gene Expression Kohman, Rachel A. Rodriguez-Zas, Sandra L. Southey, Bruce R. Kelley, Keith W. Dantzer, Robert Rhodes, Justin S. PLoS One Research Article Normal aging alters expression of numerous genes within the brain. Some of these transcription changes likely contribute to age-associated cognitive decline, reduced neural plasticity, and the higher incidence of neuropathology. Identifying factors that modulate brain aging is crucial for improving quality of life. One promising intervention to counteract negative effects of aging is aerobic exercise. Aged subjects that exercise show enhanced cognitive performance and increased hippocampal neurogenesis and synaptic plasticity. Currently, the mechanisms behind the anti-aging effects of exercise are not understood. The present study conducted a microarray on whole hippocampal samples from adult (3.5-month-old) and aged (18-month-old) male BALB/c mice that were individually housed with or without running wheels for 8 weeks. Results showed that aging altered genes related to chromatin remodeling, cell growth, immune activity, and synapse organization compared to adult mice. Exercise was found to modulate many of the genes altered by aging, but in the opposite direction. For example, wheel running increased expression of genes related to cell growth and attenuated expression of genes involved in immune function and chromatin remodeling. Collectively, findings show that even late-onset exercise may attenuate age-related changes in gene expression and identifies possible pathways through which exercise may exert its beneficial effects. Public Library of Science 2011-08-08 /pmc/articles/PMC3152565/ /pubmed/21857943 http://dx.doi.org/10.1371/journal.pone.0022654 Text en Kohman et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Kohman, Rachel A. Rodriguez-Zas, Sandra L. Southey, Bruce R. Kelley, Keith W. Dantzer, Robert Rhodes, Justin S. Voluntary Wheel Running Reverses Age-Induced Changes in Hippocampal Gene Expression |
title | Voluntary Wheel Running Reverses Age-Induced Changes in Hippocampal Gene Expression |
title_full | Voluntary Wheel Running Reverses Age-Induced Changes in Hippocampal Gene Expression |
title_fullStr | Voluntary Wheel Running Reverses Age-Induced Changes in Hippocampal Gene Expression |
title_full_unstemmed | Voluntary Wheel Running Reverses Age-Induced Changes in Hippocampal Gene Expression |
title_short | Voluntary Wheel Running Reverses Age-Induced Changes in Hippocampal Gene Expression |
title_sort | voluntary wheel running reverses age-induced changes in hippocampal gene expression |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3152565/ https://www.ncbi.nlm.nih.gov/pubmed/21857943 http://dx.doi.org/10.1371/journal.pone.0022654 |
work_keys_str_mv | AT kohmanrachela voluntarywheelrunningreversesageinducedchangesinhippocampalgeneexpression AT rodriguezzassandral voluntarywheelrunningreversesageinducedchangesinhippocampalgeneexpression AT southeybrucer voluntarywheelrunningreversesageinducedchangesinhippocampalgeneexpression AT kelleykeithw voluntarywheelrunningreversesageinducedchangesinhippocampalgeneexpression AT dantzerrobert voluntarywheelrunningreversesageinducedchangesinhippocampalgeneexpression AT rhodesjustins voluntarywheelrunningreversesageinducedchangesinhippocampalgeneexpression |