Cargando…
DeBi: Discovering Differentially Expressed Biclusters using a Frequent Itemset Approach
BACKGROUND: The analysis of massive high throughput data via clustering algorithms is very important for elucidating gene functions in biological systems. However, traditional clustering methods have several drawbacks. Biclustering overcomes these limitations by grouping genes and samples simultaneo...
Autores principales: | Serin, Akdes, Vingron, Martin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3152888/ https://www.ncbi.nlm.nih.gov/pubmed/21699691 http://dx.doi.org/10.1186/1748-7188-6-18 |
Ejemplares similares
-
Bit-Table Based Biclustering and Frequent Closed Itemset Mining in High-Dimensional Binary Data
por: Király, András, et al.
Publicado: (2014) -
SiBIC: A Web Server for Generating Gene Set Networks Based on Biclusters Obtained by Maximal Frequent Itemset Mining
por: Takahashi, Kei-ichiro, et al.
Publicado: (2013) -
A primer to frequent itemset mining for bioinformatics
por: Naulaerts, Stefan, et al.
Publicado: (2015) -
An efficient pattern growth approach for mining fault tolerant frequent itemsets
por: Bashir, Shariq
Publicado: (2020) -
The Mining Algorithm of Maximum Frequent Itemsets Based on Frequent Pattern Tree
por: Mi, Xifeng
Publicado: (2022)