Cargando…
Optimizing automated characterization of liver fibrosis histological images by investigating color spaces at different resolutions
Texture analysis (TA) of histological images has recently received attention as an automated method of characterizing liver fibrosis. The colored staining methods used to identify different tissue components reveal various patterns that contribute in different ways to the digital texture of the imag...
Autor principal: | Mahmoud-Ghoneim, Doaa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3152895/ https://www.ncbi.nlm.nih.gov/pubmed/21756305 http://dx.doi.org/10.1186/1742-4682-8-25 |
Ejemplares similares
-
New Colors for Histology: Optimized Bivariate Color Maps Increase Perceptual Contrast in Histological Images
por: Kather, Jakob Nikolas, et al.
Publicado: (2015) -
Image Clustering with Optimization Algorithms and Color Space
por: Rahkar Farshi, Taymaz, et al.
Publicado: (2018) -
Experimental Assessment of Color Deconvolution and Color Normalization for Automated Classification of Histology Images Stained with Hematoxylin and Eosin
por: Bianconi, Francesco, et al.
Publicado: (2020) -
Toward automated classification of monolayer versus few-layer nanomaterials using texture analysis and neural networks
por: Aleithan, Shrouq H., et al.
Publicado: (2020) -
The structure and properties of color spaces and the representation of color images
por: Dubois, Eric
Publicado: (2009)