Cargando…
Elevated Vitamin D Receptor Levels in Genetic Hypercalciuric Stone-Forming Rats Are Associated With Downregulation of Snail
Patients with idiopathic hypercalciuria (IH) and genetic hypercalciuric stone-forming (GHS) rats, an animal model of IH, are both characterized by normal serum Ca, hypercalciuria, Ca nephrolithiasis, reduced renal Ca reabsorption, and increased bone resorption. Serum 1,25-dihydroxyvitamin D [1,25(OH...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wiley Subscription Services, Inc., A Wiley Company
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3153334/ https://www.ncbi.nlm.nih.gov/pubmed/19929616 http://dx.doi.org/10.1359/jbmr.091010 |
_version_ | 1782209887416090624 |
---|---|
author | Bai, Shaochun Wang, Hongwei Shen, Jikun Zhou, Randal Bushinsky, David A Favus, Murray J |
author_facet | Bai, Shaochun Wang, Hongwei Shen, Jikun Zhou, Randal Bushinsky, David A Favus, Murray J |
author_sort | Bai, Shaochun |
collection | PubMed |
description | Patients with idiopathic hypercalciuria (IH) and genetic hypercalciuric stone-forming (GHS) rats, an animal model of IH, are both characterized by normal serum Ca, hypercalciuria, Ca nephrolithiasis, reduced renal Ca reabsorption, and increased bone resorption. Serum 1,25-dihydroxyvitamin D [1,25(OH)(2)D] levels are elevated or normal in IH and are normal in GHS rats. In GHS rats, vitamin D receptor (VDR) protein levels are elevated in intestinal, kidney, and bone cells, and in IH, peripheral blood monocyte VDR levels are high. The high VDR is thought to amplify the target-tissue actions of normal circulating 1,25(OH)(2)D levels to increase Ca transport. The aim of this study was to elucidate the molecular mechanisms whereby Snail may contribute to the high VDR levels in GHS rats. In the study, Snail gene expression and protein levels were lower in GHS rat tissues and inversely correlated with VDR gene expression and protein levels in intestine and kidney cells. In human kidney and colon cell lines, ChIP assays revealed endogenous Snail binding close to specific E-box sequences within the human VDR promoter region, whereas only one E-box specifically bound Snail in the rat promoter. Snail binding to rat VDR promoter E-box regions was reduced in GHS compared with normal control intestine and was accompanied by hyperacetylation of histone H(3). These results provide evidence that elevated VDR in GHS rats likely occurs because of derepression resulting from reduced Snail binding to the VDR promoter and hyperacetylation of histone H(3). © 2010 American Society for Bone and Mineral Research. |
format | Online Article Text |
id | pubmed-3153334 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | Wiley Subscription Services, Inc., A Wiley Company |
record_format | MEDLINE/PubMed |
spelling | pubmed-31533342011-08-19 Elevated Vitamin D Receptor Levels in Genetic Hypercalciuric Stone-Forming Rats Are Associated With Downregulation of Snail Bai, Shaochun Wang, Hongwei Shen, Jikun Zhou, Randal Bushinsky, David A Favus, Murray J J Bone Miner Res Original Article Patients with idiopathic hypercalciuria (IH) and genetic hypercalciuric stone-forming (GHS) rats, an animal model of IH, are both characterized by normal serum Ca, hypercalciuria, Ca nephrolithiasis, reduced renal Ca reabsorption, and increased bone resorption. Serum 1,25-dihydroxyvitamin D [1,25(OH)(2)D] levels are elevated or normal in IH and are normal in GHS rats. In GHS rats, vitamin D receptor (VDR) protein levels are elevated in intestinal, kidney, and bone cells, and in IH, peripheral blood monocyte VDR levels are high. The high VDR is thought to amplify the target-tissue actions of normal circulating 1,25(OH)(2)D levels to increase Ca transport. The aim of this study was to elucidate the molecular mechanisms whereby Snail may contribute to the high VDR levels in GHS rats. In the study, Snail gene expression and protein levels were lower in GHS rat tissues and inversely correlated with VDR gene expression and protein levels in intestine and kidney cells. In human kidney and colon cell lines, ChIP assays revealed endogenous Snail binding close to specific E-box sequences within the human VDR promoter region, whereas only one E-box specifically bound Snail in the rat promoter. Snail binding to rat VDR promoter E-box regions was reduced in GHS compared with normal control intestine and was accompanied by hyperacetylation of histone H(3). These results provide evidence that elevated VDR in GHS rats likely occurs because of derepression resulting from reduced Snail binding to the VDR promoter and hyperacetylation of histone H(3). © 2010 American Society for Bone and Mineral Research. Wiley Subscription Services, Inc., A Wiley Company 2010-04 2009-10-12 /pmc/articles/PMC3153334/ /pubmed/19929616 http://dx.doi.org/10.1359/jbmr.091010 Text en Copyright © 2010 American Society for Bone and Mineral Research http://creativecommons.org/licenses/by/2.5/ Re-use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation. |
spellingShingle | Original Article Bai, Shaochun Wang, Hongwei Shen, Jikun Zhou, Randal Bushinsky, David A Favus, Murray J Elevated Vitamin D Receptor Levels in Genetic Hypercalciuric Stone-Forming Rats Are Associated With Downregulation of Snail |
title | Elevated Vitamin D Receptor Levels in Genetic Hypercalciuric Stone-Forming Rats Are Associated With Downregulation of Snail |
title_full | Elevated Vitamin D Receptor Levels in Genetic Hypercalciuric Stone-Forming Rats Are Associated With Downregulation of Snail |
title_fullStr | Elevated Vitamin D Receptor Levels in Genetic Hypercalciuric Stone-Forming Rats Are Associated With Downregulation of Snail |
title_full_unstemmed | Elevated Vitamin D Receptor Levels in Genetic Hypercalciuric Stone-Forming Rats Are Associated With Downregulation of Snail |
title_short | Elevated Vitamin D Receptor Levels in Genetic Hypercalciuric Stone-Forming Rats Are Associated With Downregulation of Snail |
title_sort | elevated vitamin d receptor levels in genetic hypercalciuric stone-forming rats are associated with downregulation of snail |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3153334/ https://www.ncbi.nlm.nih.gov/pubmed/19929616 http://dx.doi.org/10.1359/jbmr.091010 |
work_keys_str_mv | AT baishaochun elevatedvitamindreceptorlevelsingenetichypercalciuricstoneformingratsareassociatedwithdownregulationofsnail AT wanghongwei elevatedvitamindreceptorlevelsingenetichypercalciuricstoneformingratsareassociatedwithdownregulationofsnail AT shenjikun elevatedvitamindreceptorlevelsingenetichypercalciuricstoneformingratsareassociatedwithdownregulationofsnail AT zhourandal elevatedvitamindreceptorlevelsingenetichypercalciuricstoneformingratsareassociatedwithdownregulationofsnail AT bushinskydavida elevatedvitamindreceptorlevelsingenetichypercalciuricstoneformingratsareassociatedwithdownregulationofsnail AT favusmurrayj elevatedvitamindreceptorlevelsingenetichypercalciuricstoneformingratsareassociatedwithdownregulationofsnail |