Cargando…
Overexpression of Secreted Frizzled-Related Protein 1 Inhibits Bone Formation and Attenuates Parathyroid Hormone Bone Anabolic Effects
Secreted frizzled-related protein 1 (sFRP1) is an antagonist of Wnt signaling, an important pathway in maintaining bone homeostasis. In this study we evaluated the skeletal phenotype of mice overexpressing sFRP1 (sFRP1 Tg) and the interaction of parathyroid hormone (PTH) treatment and sFRP1 (over)ex...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wiley Subscription Services, Inc., A Wiley Company
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3153380/ https://www.ncbi.nlm.nih.gov/pubmed/19594295 http://dx.doi.org/10.1359/jbmr.090719 |
_version_ | 1782209893126635520 |
---|---|
author | Yao, Wei Cheng, Zhiqiang Shahnazari, Mohammad Dai, Wewei Johnson, Mark L Lane, Nancy E |
author_facet | Yao, Wei Cheng, Zhiqiang Shahnazari, Mohammad Dai, Wewei Johnson, Mark L Lane, Nancy E |
author_sort | Yao, Wei |
collection | PubMed |
description | Secreted frizzled-related protein 1 (sFRP1) is an antagonist of Wnt signaling, an important pathway in maintaining bone homeostasis. In this study we evaluated the skeletal phenotype of mice overexpressing sFRP1 (sFRP1 Tg) and the interaction of parathyroid hormone (PTH) treatment and sFRP1 (over)expression. Bone mass and microarchitecture were measured by micro-computed tomography (µCT). Osteoblastic and osteoclastic cell maturation and function were assessed in primary bone marrow cell cultures. Bone turnover was assessed by biochemical markers and dynamic bone histomorphometry. Real-time PCR was used to monitor the expression of several genes that regulate osteoblast maturation and function in whole bone. We found that trabecular bone mass measurements in distal femurs and lumbar vertebral bodies were 22% and 51% lower in female and 9% and 33% lower in male sFRP1 Tg mice, respectively, compared with wild-type (WT) controls at 3 months of age. Genes associated with osteoblast maturation and function, serum bone formation markers, and surface based bone formation were significantly decreased in sFRP1 Tg mice of both sexes. Bone resorption was similar between sFRP1 Tg and WT females and was higher in sFRP1 Tg male mice. Treatment with hPTH(1-34) (40 µg/kg/d) for 2 weeks increased trabecular bone volume in WT mice (females: +30% to 50%; males: +35% to 150%) compared with sFRP1 Tg mice (females: +5%; males: +18% to 54%). Percentage increases in bone formation also were lower in PTH-treated sFRP1 Tg mice compared with PTH-treated WT mice. In conclusion, overexpression of sFRP1 inhibited bone formation as well as attenuated PTH anabolic action on bone. The gender differences in the bone phenotype of the sFRP1 Tg animal warrants further investigation. © 2010 American Society for Bone and Mineral Research |
format | Online Article Text |
id | pubmed-3153380 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | Wiley Subscription Services, Inc., A Wiley Company |
record_format | MEDLINE/PubMed |
spelling | pubmed-31533802011-08-19 Overexpression of Secreted Frizzled-Related Protein 1 Inhibits Bone Formation and Attenuates Parathyroid Hormone Bone Anabolic Effects Yao, Wei Cheng, Zhiqiang Shahnazari, Mohammad Dai, Wewei Johnson, Mark L Lane, Nancy E J Bone Miner Res Original Article Secreted frizzled-related protein 1 (sFRP1) is an antagonist of Wnt signaling, an important pathway in maintaining bone homeostasis. In this study we evaluated the skeletal phenotype of mice overexpressing sFRP1 (sFRP1 Tg) and the interaction of parathyroid hormone (PTH) treatment and sFRP1 (over)expression. Bone mass and microarchitecture were measured by micro-computed tomography (µCT). Osteoblastic and osteoclastic cell maturation and function were assessed in primary bone marrow cell cultures. Bone turnover was assessed by biochemical markers and dynamic bone histomorphometry. Real-time PCR was used to monitor the expression of several genes that regulate osteoblast maturation and function in whole bone. We found that trabecular bone mass measurements in distal femurs and lumbar vertebral bodies were 22% and 51% lower in female and 9% and 33% lower in male sFRP1 Tg mice, respectively, compared with wild-type (WT) controls at 3 months of age. Genes associated with osteoblast maturation and function, serum bone formation markers, and surface based bone formation were significantly decreased in sFRP1 Tg mice of both sexes. Bone resorption was similar between sFRP1 Tg and WT females and was higher in sFRP1 Tg male mice. Treatment with hPTH(1-34) (40 µg/kg/d) for 2 weeks increased trabecular bone volume in WT mice (females: +30% to 50%; males: +35% to 150%) compared with sFRP1 Tg mice (females: +5%; males: +18% to 54%). Percentage increases in bone formation also were lower in PTH-treated sFRP1 Tg mice compared with PTH-treated WT mice. In conclusion, overexpression of sFRP1 inhibited bone formation as well as attenuated PTH anabolic action on bone. The gender differences in the bone phenotype of the sFRP1 Tg animal warrants further investigation. © 2010 American Society for Bone and Mineral Research Wiley Subscription Services, Inc., A Wiley Company 2010-02 2009-07-13 /pmc/articles/PMC3153380/ /pubmed/19594295 http://dx.doi.org/10.1359/jbmr.090719 Text en Copyright © 2010 American Society for Bone and Mineral Research http://creativecommons.org/licenses/by/2.5/ Re-use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation. |
spellingShingle | Original Article Yao, Wei Cheng, Zhiqiang Shahnazari, Mohammad Dai, Wewei Johnson, Mark L Lane, Nancy E Overexpression of Secreted Frizzled-Related Protein 1 Inhibits Bone Formation and Attenuates Parathyroid Hormone Bone Anabolic Effects |
title | Overexpression of Secreted Frizzled-Related Protein 1 Inhibits Bone Formation and Attenuates Parathyroid Hormone Bone Anabolic Effects |
title_full | Overexpression of Secreted Frizzled-Related Protein 1 Inhibits Bone Formation and Attenuates Parathyroid Hormone Bone Anabolic Effects |
title_fullStr | Overexpression of Secreted Frizzled-Related Protein 1 Inhibits Bone Formation and Attenuates Parathyroid Hormone Bone Anabolic Effects |
title_full_unstemmed | Overexpression of Secreted Frizzled-Related Protein 1 Inhibits Bone Formation and Attenuates Parathyroid Hormone Bone Anabolic Effects |
title_short | Overexpression of Secreted Frizzled-Related Protein 1 Inhibits Bone Formation and Attenuates Parathyroid Hormone Bone Anabolic Effects |
title_sort | overexpression of secreted frizzled-related protein 1 inhibits bone formation and attenuates parathyroid hormone bone anabolic effects |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3153380/ https://www.ncbi.nlm.nih.gov/pubmed/19594295 http://dx.doi.org/10.1359/jbmr.090719 |
work_keys_str_mv | AT yaowei overexpressionofsecretedfrizzledrelatedprotein1inhibitsboneformationandattenuatesparathyroidhormoneboneanaboliceffects AT chengzhiqiang overexpressionofsecretedfrizzledrelatedprotein1inhibitsboneformationandattenuatesparathyroidhormoneboneanaboliceffects AT shahnazarimohammad overexpressionofsecretedfrizzledrelatedprotein1inhibitsboneformationandattenuatesparathyroidhormoneboneanaboliceffects AT daiwewei overexpressionofsecretedfrizzledrelatedprotein1inhibitsboneformationandattenuatesparathyroidhormoneboneanaboliceffects AT johnsonmarkl overexpressionofsecretedfrizzledrelatedprotein1inhibitsboneformationandattenuatesparathyroidhormoneboneanaboliceffects AT lanenancye overexpressionofsecretedfrizzledrelatedprotein1inhibitsboneformationandattenuatesparathyroidhormoneboneanaboliceffects |