Cargando…

Genome-wide Analysis of Aminoacylation (Charging) Levels of tRNA Using Microarrays

tRNA aminoacylation, or charging, levels can rapidly change within a cell in response to the environment[1]. Changes in tRNA charging levels in both prokaryotic and eukaryotic cells lead to translational regulation which is a major cellular mechanism of stress response. Familiar examples are the str...

Descripción completa

Detalles Bibliográficos
Autores principales: Zaborske, John, Pan, Tao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MyJove Corporation 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3153904/
https://www.ncbi.nlm.nih.gov/pubmed/20567214
http://dx.doi.org/10.3791/2007
Descripción
Sumario:tRNA aminoacylation, or charging, levels can rapidly change within a cell in response to the environment[1]. Changes in tRNA charging levels in both prokaryotic and eukaryotic cells lead to translational regulation which is a major cellular mechanism of stress response. Familiar examples are the stringent response in E. coli and the Gcn2 stress response pathway in yeast ([2-6]). Recent work in E. coli and S. cerevisiae have shown that tRNA charging patterns are highly dynamic and depends on the type of stress experienced by cells [1, 6, 7]. The highly dynamic, variable nature of tRNA charging makes it essential to determine changes in tRNA charging levels at the genomic scale, in order to fully elucidate cellular response to environmental variations. In this review we present a method for simultaneously measuring the relative charging levels of all tRNAs in S. cerevisiae . While the protocol presented here is for yeast, this protocol has been successfully applied for determining relative charging levels in a wide variety of organisms including E. coli and human cell cultures[7, 8].