Cargando…

Low-energy Control of Electrical Turbulence in the Heart

Controlling the complex spatio-temporal dynamics underlying life-threatening cardiac arrhythmias such as fibrillation is extremely difficult due to the nonlinear interaction of excitation waves within a heterogeneous anatomical substrate(1–4). Lacking a better strategy, strong, globally resetting el...

Descripción completa

Detalles Bibliográficos
Autores principales: Luther, Stefan, Fenton, Flavio H., Kornreich, Bruce G., Squires, Amgad, Bittihn, Philip, Hornung, Daniel, Zabel, Markus, Flanders, James, Gladuli, Andrea, Campoy, Luis, Cherry, Elizabeth M., Luther, Gisa, Hasenfuss, Gerd, Krinsky, Valentin I., Pumir, Alain, Gilmour, Robert F., Bodenschatz, Eberhard
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3153959/
https://www.ncbi.nlm.nih.gov/pubmed/21753855
http://dx.doi.org/10.1038/nature10216
_version_ 1782209967490596864
author Luther, Stefan
Fenton, Flavio H.
Kornreich, Bruce G.
Squires, Amgad
Bittihn, Philip
Hornung, Daniel
Zabel, Markus
Flanders, James
Gladuli, Andrea
Campoy, Luis
Cherry, Elizabeth M.
Luther, Gisa
Hasenfuss, Gerd
Krinsky, Valentin I.
Pumir, Alain
Gilmour, Robert F.
Bodenschatz, Eberhard
author_facet Luther, Stefan
Fenton, Flavio H.
Kornreich, Bruce G.
Squires, Amgad
Bittihn, Philip
Hornung, Daniel
Zabel, Markus
Flanders, James
Gladuli, Andrea
Campoy, Luis
Cherry, Elizabeth M.
Luther, Gisa
Hasenfuss, Gerd
Krinsky, Valentin I.
Pumir, Alain
Gilmour, Robert F.
Bodenschatz, Eberhard
author_sort Luther, Stefan
collection PubMed
description Controlling the complex spatio-temporal dynamics underlying life-threatening cardiac arrhythmias such as fibrillation is extremely difficult due to the nonlinear interaction of excitation waves within a heterogeneous anatomical substrate(1–4). Lacking a better strategy, strong, globally resetting electrical shocks remain the only reliable treatment for cardiac fibrillation(5–7). Here, we establish the relation between the response of the tissue to an electric field and the spatial distribution of heterogeneities of the scale-free coronary vascular structure. We show that in response to a pulsed electric field E, these heterogeneities serve as nucleation sites for the generation of intramural electrical waves with a source density ρ(E), and a characteristic time τ for tissue depolarization that obeys a power law τ∝E(α). These intramural wave sources permit targeting of electrical turbulence near the cores of the vortices of electrical activity that drive complex fibrillatory dynamics. We show in vitro that simultaneous and direct access to multiple vortex cores results in rapid synchronization of cardiac tissue and therefore efficient termination of fibrillation. Using this novel control strategy, we demonstrate, for the first time, low-energy termination of fibrillation in vivo. Our results give new insights into the mechanisms and dynamics underlying the control of spatio-temporal chaos in heterogeneous excitable media and at the same time provide new research perspectives towards alternative, life-saving low-energy defibrillation techniques.
format Online
Article
Text
id pubmed-3153959
institution National Center for Biotechnology Information
language English
publishDate 2011
record_format MEDLINE/PubMed
spelling pubmed-31539592012-01-14 Low-energy Control of Electrical Turbulence in the Heart Luther, Stefan Fenton, Flavio H. Kornreich, Bruce G. Squires, Amgad Bittihn, Philip Hornung, Daniel Zabel, Markus Flanders, James Gladuli, Andrea Campoy, Luis Cherry, Elizabeth M. Luther, Gisa Hasenfuss, Gerd Krinsky, Valentin I. Pumir, Alain Gilmour, Robert F. Bodenschatz, Eberhard Nature Article Controlling the complex spatio-temporal dynamics underlying life-threatening cardiac arrhythmias such as fibrillation is extremely difficult due to the nonlinear interaction of excitation waves within a heterogeneous anatomical substrate(1–4). Lacking a better strategy, strong, globally resetting electrical shocks remain the only reliable treatment for cardiac fibrillation(5–7). Here, we establish the relation between the response of the tissue to an electric field and the spatial distribution of heterogeneities of the scale-free coronary vascular structure. We show that in response to a pulsed electric field E, these heterogeneities serve as nucleation sites for the generation of intramural electrical waves with a source density ρ(E), and a characteristic time τ for tissue depolarization that obeys a power law τ∝E(α). These intramural wave sources permit targeting of electrical turbulence near the cores of the vortices of electrical activity that drive complex fibrillatory dynamics. We show in vitro that simultaneous and direct access to multiple vortex cores results in rapid synchronization of cardiac tissue and therefore efficient termination of fibrillation. Using this novel control strategy, we demonstrate, for the first time, low-energy termination of fibrillation in vivo. Our results give new insights into the mechanisms and dynamics underlying the control of spatio-temporal chaos in heterogeneous excitable media and at the same time provide new research perspectives towards alternative, life-saving low-energy defibrillation techniques. 2011-07-13 /pmc/articles/PMC3153959/ /pubmed/21753855 http://dx.doi.org/10.1038/nature10216 Text en Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms
spellingShingle Article
Luther, Stefan
Fenton, Flavio H.
Kornreich, Bruce G.
Squires, Amgad
Bittihn, Philip
Hornung, Daniel
Zabel, Markus
Flanders, James
Gladuli, Andrea
Campoy, Luis
Cherry, Elizabeth M.
Luther, Gisa
Hasenfuss, Gerd
Krinsky, Valentin I.
Pumir, Alain
Gilmour, Robert F.
Bodenschatz, Eberhard
Low-energy Control of Electrical Turbulence in the Heart
title Low-energy Control of Electrical Turbulence in the Heart
title_full Low-energy Control of Electrical Turbulence in the Heart
title_fullStr Low-energy Control of Electrical Turbulence in the Heart
title_full_unstemmed Low-energy Control of Electrical Turbulence in the Heart
title_short Low-energy Control of Electrical Turbulence in the Heart
title_sort low-energy control of electrical turbulence in the heart
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3153959/
https://www.ncbi.nlm.nih.gov/pubmed/21753855
http://dx.doi.org/10.1038/nature10216
work_keys_str_mv AT lutherstefan lowenergycontrolofelectricalturbulenceintheheart
AT fentonflavioh lowenergycontrolofelectricalturbulenceintheheart
AT kornreichbruceg lowenergycontrolofelectricalturbulenceintheheart
AT squiresamgad lowenergycontrolofelectricalturbulenceintheheart
AT bittihnphilip lowenergycontrolofelectricalturbulenceintheheart
AT hornungdaniel lowenergycontrolofelectricalturbulenceintheheart
AT zabelmarkus lowenergycontrolofelectricalturbulenceintheheart
AT flandersjames lowenergycontrolofelectricalturbulenceintheheart
AT gladuliandrea lowenergycontrolofelectricalturbulenceintheheart
AT campoyluis lowenergycontrolofelectricalturbulenceintheheart
AT cherryelizabethm lowenergycontrolofelectricalturbulenceintheheart
AT luthergisa lowenergycontrolofelectricalturbulenceintheheart
AT hasenfussgerd lowenergycontrolofelectricalturbulenceintheheart
AT krinskyvalentini lowenergycontrolofelectricalturbulenceintheheart
AT pumiralain lowenergycontrolofelectricalturbulenceintheheart
AT gilmourrobertf lowenergycontrolofelectricalturbulenceintheheart
AT bodenschatzeberhard lowenergycontrolofelectricalturbulenceintheheart