Cargando…

Predicting Final Extent of Ischemic Infarction Using Artificial Neural Network Analysis of Multi-Parametric MRI in Patients with Stroke

In hemispheric ischemic stroke, the final size of the ischemic lesion is the most important correlate of clinical functional outcome. Using a set of acute-phase MR images (Diffusion-weighted - DWI, T(1)-weighted – T1WI, T(2)-weighted-T2WI, and proton density weighted - PDWI) for inputs, and the chro...

Descripción completa

Detalles Bibliográficos
Autores principales: Bagher-Ebadian, Hassan, Jafari-Khouzani, Kourosh, Mitsias, Panayiotis D., Lu, Mei, Soltanian-Zadeh, Hamid, Chopp, Michael, Ewing, James R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3154199/
https://www.ncbi.nlm.nih.gov/pubmed/21853039
http://dx.doi.org/10.1371/journal.pone.0022626
_version_ 1782209993880109056
author Bagher-Ebadian, Hassan
Jafari-Khouzani, Kourosh
Mitsias, Panayiotis D.
Lu, Mei
Soltanian-Zadeh, Hamid
Chopp, Michael
Ewing, James R.
author_facet Bagher-Ebadian, Hassan
Jafari-Khouzani, Kourosh
Mitsias, Panayiotis D.
Lu, Mei
Soltanian-Zadeh, Hamid
Chopp, Michael
Ewing, James R.
author_sort Bagher-Ebadian, Hassan
collection PubMed
description In hemispheric ischemic stroke, the final size of the ischemic lesion is the most important correlate of clinical functional outcome. Using a set of acute-phase MR images (Diffusion-weighted - DWI, T(1)-weighted – T1WI, T(2)-weighted-T2WI, and proton density weighted - PDWI) for inputs, and the chronic T2WI at 3 months as an outcome measure, an Artificial Neural Network (ANN) was trained to predict the 3-month outcome in the form of a voxel-by-voxel forecast of the chronic T2WI. The ANN was trained and tested using 12 subjects (with 83 slices and 140218 voxels) using a leave-one-out cross-validation method with calculation of the Area Under the Receiver Operator Characteristic Curve (AUROC) for training, testing and optimization of the ANN. After training and optimization, the ANN produced maps of predicted outcome that were well correlated (r = 0.80, p<0.0001) with the T2WI at 3 months for all 12 patients. This result implies that the trained ANN can provide an estimate of 3-month ischemic lesion on T2WI in a stable and accurate manner (AUROC = 0.89).
format Online
Article
Text
id pubmed-3154199
institution National Center for Biotechnology Information
language English
publishDate 2011
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-31541992011-08-18 Predicting Final Extent of Ischemic Infarction Using Artificial Neural Network Analysis of Multi-Parametric MRI in Patients with Stroke Bagher-Ebadian, Hassan Jafari-Khouzani, Kourosh Mitsias, Panayiotis D. Lu, Mei Soltanian-Zadeh, Hamid Chopp, Michael Ewing, James R. PLoS One Research Article In hemispheric ischemic stroke, the final size of the ischemic lesion is the most important correlate of clinical functional outcome. Using a set of acute-phase MR images (Diffusion-weighted - DWI, T(1)-weighted – T1WI, T(2)-weighted-T2WI, and proton density weighted - PDWI) for inputs, and the chronic T2WI at 3 months as an outcome measure, an Artificial Neural Network (ANN) was trained to predict the 3-month outcome in the form of a voxel-by-voxel forecast of the chronic T2WI. The ANN was trained and tested using 12 subjects (with 83 slices and 140218 voxels) using a leave-one-out cross-validation method with calculation of the Area Under the Receiver Operator Characteristic Curve (AUROC) for training, testing and optimization of the ANN. After training and optimization, the ANN produced maps of predicted outcome that were well correlated (r = 0.80, p<0.0001) with the T2WI at 3 months for all 12 patients. This result implies that the trained ANN can provide an estimate of 3-month ischemic lesion on T2WI in a stable and accurate manner (AUROC = 0.89). Public Library of Science 2011-08-10 /pmc/articles/PMC3154199/ /pubmed/21853039 http://dx.doi.org/10.1371/journal.pone.0022626 Text en Bagher-Ebadian et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Bagher-Ebadian, Hassan
Jafari-Khouzani, Kourosh
Mitsias, Panayiotis D.
Lu, Mei
Soltanian-Zadeh, Hamid
Chopp, Michael
Ewing, James R.
Predicting Final Extent of Ischemic Infarction Using Artificial Neural Network Analysis of Multi-Parametric MRI in Patients with Stroke
title Predicting Final Extent of Ischemic Infarction Using Artificial Neural Network Analysis of Multi-Parametric MRI in Patients with Stroke
title_full Predicting Final Extent of Ischemic Infarction Using Artificial Neural Network Analysis of Multi-Parametric MRI in Patients with Stroke
title_fullStr Predicting Final Extent of Ischemic Infarction Using Artificial Neural Network Analysis of Multi-Parametric MRI in Patients with Stroke
title_full_unstemmed Predicting Final Extent of Ischemic Infarction Using Artificial Neural Network Analysis of Multi-Parametric MRI in Patients with Stroke
title_short Predicting Final Extent of Ischemic Infarction Using Artificial Neural Network Analysis of Multi-Parametric MRI in Patients with Stroke
title_sort predicting final extent of ischemic infarction using artificial neural network analysis of multi-parametric mri in patients with stroke
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3154199/
https://www.ncbi.nlm.nih.gov/pubmed/21853039
http://dx.doi.org/10.1371/journal.pone.0022626
work_keys_str_mv AT bagherebadianhassan predictingfinalextentofischemicinfarctionusingartificialneuralnetworkanalysisofmultiparametricmriinpatientswithstroke
AT jafarikhouzanikourosh predictingfinalextentofischemicinfarctionusingartificialneuralnetworkanalysisofmultiparametricmriinpatientswithstroke
AT mitsiaspanayiotisd predictingfinalextentofischemicinfarctionusingartificialneuralnetworkanalysisofmultiparametricmriinpatientswithstroke
AT lumei predictingfinalextentofischemicinfarctionusingartificialneuralnetworkanalysisofmultiparametricmriinpatientswithstroke
AT soltanianzadehhamid predictingfinalextentofischemicinfarctionusingartificialneuralnetworkanalysisofmultiparametricmriinpatientswithstroke
AT choppmichael predictingfinalextentofischemicinfarctionusingartificialneuralnetworkanalysisofmultiparametricmriinpatientswithstroke
AT ewingjamesr predictingfinalextentofischemicinfarctionusingartificialneuralnetworkanalysisofmultiparametricmriinpatientswithstroke