Cargando…
Celsr3 Is Required for Normal Development of GABA Circuits in the Inner Retina
The identity of the specific molecules required for the process of retinal circuitry formation is largely unknown. Here we report a newly identified zebrafish mutant in which the absence of the atypical cadherin, Celsr3, leads to a specific defect in the development of GABAergic signaling in the inn...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3154962/ https://www.ncbi.nlm.nih.gov/pubmed/21852962 http://dx.doi.org/10.1371/journal.pgen.1002239 |
_version_ | 1782210064409427968 |
---|---|
author | Lewis, Alaron Wilson, Neil Stearns, George Johnson, Nicolas Nelson, Ralph Brockerhoff, Susan E. |
author_facet | Lewis, Alaron Wilson, Neil Stearns, George Johnson, Nicolas Nelson, Ralph Brockerhoff, Susan E. |
author_sort | Lewis, Alaron |
collection | PubMed |
description | The identity of the specific molecules required for the process of retinal circuitry formation is largely unknown. Here we report a newly identified zebrafish mutant in which the absence of the atypical cadherin, Celsr3, leads to a specific defect in the development of GABAergic signaling in the inner retina. This mutant lacks an optokinetic response (OKR), the ability to visually track rotating illuminated stripes, and develops a super-normal b-wave in the electroretinogram (ERG). We find that celsr3 mRNA is abundant in the amacrine and ganglion cells of the retina, however its loss does not affect synaptic lamination within the inner plexiform layer (IPL) or amacrine cell number. We localize the ERG defect pharmacologically to a late-stage disruption in GABAergic modulation of ON-bipolar cell pathway and find that the DNQX-sensitive fast b1 component of the ERG is specifically affected in this mutant. Consistently, we find an increase in GABA receptors on mutant ON-bipolar terminals, providing a direct link between the observed physiological changes and alterations in GABA signaling components. Finally, using blastula transplantation, we show that the lack of an OKR is due, at least partially, to Celsr3-mediated defects within the brain. These findings support the previously postulated inner retina origin for the b1 component and reveal a new role for Celsr3 in the normal development of ON visual pathway circuitry in the inner retina. |
format | Online Article Text |
id | pubmed-3154962 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-31549622011-08-18 Celsr3 Is Required for Normal Development of GABA Circuits in the Inner Retina Lewis, Alaron Wilson, Neil Stearns, George Johnson, Nicolas Nelson, Ralph Brockerhoff, Susan E. PLoS Genet Research Article The identity of the specific molecules required for the process of retinal circuitry formation is largely unknown. Here we report a newly identified zebrafish mutant in which the absence of the atypical cadherin, Celsr3, leads to a specific defect in the development of GABAergic signaling in the inner retina. This mutant lacks an optokinetic response (OKR), the ability to visually track rotating illuminated stripes, and develops a super-normal b-wave in the electroretinogram (ERG). We find that celsr3 mRNA is abundant in the amacrine and ganglion cells of the retina, however its loss does not affect synaptic lamination within the inner plexiform layer (IPL) or amacrine cell number. We localize the ERG defect pharmacologically to a late-stage disruption in GABAergic modulation of ON-bipolar cell pathway and find that the DNQX-sensitive fast b1 component of the ERG is specifically affected in this mutant. Consistently, we find an increase in GABA receptors on mutant ON-bipolar terminals, providing a direct link between the observed physiological changes and alterations in GABA signaling components. Finally, using blastula transplantation, we show that the lack of an OKR is due, at least partially, to Celsr3-mediated defects within the brain. These findings support the previously postulated inner retina origin for the b1 component and reveal a new role for Celsr3 in the normal development of ON visual pathway circuitry in the inner retina. Public Library of Science 2011-08-11 /pmc/articles/PMC3154962/ /pubmed/21852962 http://dx.doi.org/10.1371/journal.pgen.1002239 Text en This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication. https://creativecommons.org/publicdomain/zero/1.0/ This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration, which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. |
spellingShingle | Research Article Lewis, Alaron Wilson, Neil Stearns, George Johnson, Nicolas Nelson, Ralph Brockerhoff, Susan E. Celsr3 Is Required for Normal Development of GABA Circuits in the Inner Retina |
title | Celsr3 Is Required for Normal Development of GABA Circuits in the Inner Retina |
title_full | Celsr3 Is Required for Normal Development of GABA Circuits in the Inner Retina |
title_fullStr | Celsr3 Is Required for Normal Development of GABA Circuits in the Inner Retina |
title_full_unstemmed | Celsr3 Is Required for Normal Development of GABA Circuits in the Inner Retina |
title_short | Celsr3 Is Required for Normal Development of GABA Circuits in the Inner Retina |
title_sort | celsr3 is required for normal development of gaba circuits in the inner retina |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3154962/ https://www.ncbi.nlm.nih.gov/pubmed/21852962 http://dx.doi.org/10.1371/journal.pgen.1002239 |
work_keys_str_mv | AT lewisalaron celsr3isrequiredfornormaldevelopmentofgabacircuitsintheinnerretina AT wilsonneil celsr3isrequiredfornormaldevelopmentofgabacircuitsintheinnerretina AT stearnsgeorge celsr3isrequiredfornormaldevelopmentofgabacircuitsintheinnerretina AT johnsonnicolas celsr3isrequiredfornormaldevelopmentofgabacircuitsintheinnerretina AT nelsonralph celsr3isrequiredfornormaldevelopmentofgabacircuitsintheinnerretina AT brockerhoffsusane celsr3isrequiredfornormaldevelopmentofgabacircuitsintheinnerretina |