Cargando…

Evaluation of Term Ranking Algorithms for Pseudo-Relevance Feedback in MEDLINE Retrieval

OBJECTIVES: The purpose of this study was to investigate the effects of query expansion algorithms for MEDLINE retrieval within a pseudo-relevance feedback framework. METHODS: A number of query expansion algorithms were tested using various term ranking formulas, focusing on query expansion based on...

Descripción completa

Detalles Bibliográficos
Autores principales: Yoo, Sooyoung, Choi, Jinwook
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Korean Society of Medical Informatics 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3155169/
https://www.ncbi.nlm.nih.gov/pubmed/21886873
http://dx.doi.org/10.4258/hir.2011.17.2.120
_version_ 1782210089974759424
author Yoo, Sooyoung
Choi, Jinwook
author_facet Yoo, Sooyoung
Choi, Jinwook
author_sort Yoo, Sooyoung
collection PubMed
description OBJECTIVES: The purpose of this study was to investigate the effects of query expansion algorithms for MEDLINE retrieval within a pseudo-relevance feedback framework. METHODS: A number of query expansion algorithms were tested using various term ranking formulas, focusing on query expansion based on pseudo-relevance feedback. The OHSUMED test collection, which is a subset of the MEDLINE database, was used as a test corpus. Various ranking algorithms were tested in combination with different term re-weighting algorithms. RESULTS: Our comprehensive evaluation showed that the local context analysis ranking algorithm, when used in combination with one of the reweighting algorithms - Rocchio, the probabilistic model, and our variants - significantly outperformed other algorithm combinations by up to 12% (paired t-test; p < 0.05). In a pseudo-relevance feedback framework, effective query expansion would be achieved by the careful consideration of term ranking and re-weighting algorithm pairs, at least in the context of the OHSUMED corpus. CONCLUSIONS: Comparative experiments on term ranking algorithms were performed in the context of a subset of MEDLINE documents. With medical documents, local context analysis, which uses co-occurrence with all query terms, significantly outperformed various term ranking methods based on both frequency and distribution analyses. Furthermore, the results of the experiments demonstrated that the term rank-based re-weighting method contributed to a remarkable improvement in mean average precision.
format Online
Article
Text
id pubmed-3155169
institution National Center for Biotechnology Information
language English
publishDate 2011
publisher Korean Society of Medical Informatics
record_format MEDLINE/PubMed
spelling pubmed-31551692011-08-31 Evaluation of Term Ranking Algorithms for Pseudo-Relevance Feedback in MEDLINE Retrieval Yoo, Sooyoung Choi, Jinwook Healthc Inform Res Original Article OBJECTIVES: The purpose of this study was to investigate the effects of query expansion algorithms for MEDLINE retrieval within a pseudo-relevance feedback framework. METHODS: A number of query expansion algorithms were tested using various term ranking formulas, focusing on query expansion based on pseudo-relevance feedback. The OHSUMED test collection, which is a subset of the MEDLINE database, was used as a test corpus. Various ranking algorithms were tested in combination with different term re-weighting algorithms. RESULTS: Our comprehensive evaluation showed that the local context analysis ranking algorithm, when used in combination with one of the reweighting algorithms - Rocchio, the probabilistic model, and our variants - significantly outperformed other algorithm combinations by up to 12% (paired t-test; p < 0.05). In a pseudo-relevance feedback framework, effective query expansion would be achieved by the careful consideration of term ranking and re-weighting algorithm pairs, at least in the context of the OHSUMED corpus. CONCLUSIONS: Comparative experiments on term ranking algorithms were performed in the context of a subset of MEDLINE documents. With medical documents, local context analysis, which uses co-occurrence with all query terms, significantly outperformed various term ranking methods based on both frequency and distribution analyses. Furthermore, the results of the experiments demonstrated that the term rank-based re-weighting method contributed to a remarkable improvement in mean average precision. Korean Society of Medical Informatics 2011-06 2011-06-30 /pmc/articles/PMC3155169/ /pubmed/21886873 http://dx.doi.org/10.4258/hir.2011.17.2.120 Text en © 2011 The Korean Society of Medical Informatics http://creativecommons.org/licenses/by-nc/3.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Article
Yoo, Sooyoung
Choi, Jinwook
Evaluation of Term Ranking Algorithms for Pseudo-Relevance Feedback in MEDLINE Retrieval
title Evaluation of Term Ranking Algorithms for Pseudo-Relevance Feedback in MEDLINE Retrieval
title_full Evaluation of Term Ranking Algorithms for Pseudo-Relevance Feedback in MEDLINE Retrieval
title_fullStr Evaluation of Term Ranking Algorithms for Pseudo-Relevance Feedback in MEDLINE Retrieval
title_full_unstemmed Evaluation of Term Ranking Algorithms for Pseudo-Relevance Feedback in MEDLINE Retrieval
title_short Evaluation of Term Ranking Algorithms for Pseudo-Relevance Feedback in MEDLINE Retrieval
title_sort evaluation of term ranking algorithms for pseudo-relevance feedback in medline retrieval
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3155169/
https://www.ncbi.nlm.nih.gov/pubmed/21886873
http://dx.doi.org/10.4258/hir.2011.17.2.120
work_keys_str_mv AT yoosooyoung evaluationoftermrankingalgorithmsforpseudorelevancefeedbackinmedlineretrieval
AT choijinwook evaluationoftermrankingalgorithmsforpseudorelevancefeedbackinmedlineretrieval