Cargando…

Reciprocal Roles of Angiotensin II and Angiotensin II Receptors Blockade (ARB) in Regulating Cbfa1/RANKL via cAMP Signaling Pathway: Possible Mechanism for Hypertension-Related Osteoporosis and Antagonistic Effect of ARB on Hypertension-Related Osteoporosis

Hypertension is a risk factor for osteoporosis. Animal and epidemiological studies demonstrate that high blood pressure is associated with increased calcium loss, elevated parathyroid hormone, and increased calcium movement from bone. However, the mechanism responsible for hypertension-related osteo...

Descripción completa

Detalles Bibliográficos
Autores principales: Guan, Xiao-Xu, Zhou, Yi, Li, Ji-Yao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Molecular Diversity Preservation International (MDPI) 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3155346/
https://www.ncbi.nlm.nih.gov/pubmed/21845073
http://dx.doi.org/10.3390/ijms12074206
_version_ 1782210111016534016
author Guan, Xiao-Xu
Zhou, Yi
Li, Ji-Yao
author_facet Guan, Xiao-Xu
Zhou, Yi
Li, Ji-Yao
author_sort Guan, Xiao-Xu
collection PubMed
description Hypertension is a risk factor for osteoporosis. Animal and epidemiological studies demonstrate that high blood pressure is associated with increased calcium loss, elevated parathyroid hormone, and increased calcium movement from bone. However, the mechanism responsible for hypertension-related osteoporosis remains elusive. Recent epidemiological studies indicate the benefits of Angiotensin II Receptors Blockade (ARB) on decreasing fracture risks. Since receptors for angiotensin II, the targets of ARB, are expressed in both osteoblasts and osteoclasts, we postulated that angiotensin II plays an important role in hypertension-related osteoporosis. Cbfa1 and RANKL, the important factors for maintaining bone homeostasis and key mediators in controlling osteoblast and osteoclast differentiation, are both regulated by cAMP-dependent signaling. Angiotensin II along with factors such as LDL, HDL, NO and homocysteine that are commonly altered both in hypertension and osteoporosis, can down-regulate the expression of Cbfa1 but up-regulate RANKL expression via the cAMP signaling pathway. We thus hypothesized that, by altering the ratio of Cbfa1/RANKL expression via the cAMP-dependent pathway, angiotensin II differently regulates osteoblast and osteoclast differentiation leading to enhanced bone resorption and reduced bone formation. Since ARB can antagonize the adverse effect of angiotensin II on bone by lowering cAMP levels and modifying other downstream targets, including LDL, HDL, NO and Cbfa1/RANKL, we propose the hypothesis that the antagonistic effects of ARB may also be exerted via cAMP signaling pathway.
format Online
Article
Text
id pubmed-3155346
institution National Center for Biotechnology Information
language English
publishDate 2011
publisher Molecular Diversity Preservation International (MDPI)
record_format MEDLINE/PubMed
spelling pubmed-31553462011-08-15 Reciprocal Roles of Angiotensin II and Angiotensin II Receptors Blockade (ARB) in Regulating Cbfa1/RANKL via cAMP Signaling Pathway: Possible Mechanism for Hypertension-Related Osteoporosis and Antagonistic Effect of ARB on Hypertension-Related Osteoporosis Guan, Xiao-Xu Zhou, Yi Li, Ji-Yao Int J Mol Sci Short Note Hypertension is a risk factor for osteoporosis. Animal and epidemiological studies demonstrate that high blood pressure is associated with increased calcium loss, elevated parathyroid hormone, and increased calcium movement from bone. However, the mechanism responsible for hypertension-related osteoporosis remains elusive. Recent epidemiological studies indicate the benefits of Angiotensin II Receptors Blockade (ARB) on decreasing fracture risks. Since receptors for angiotensin II, the targets of ARB, are expressed in both osteoblasts and osteoclasts, we postulated that angiotensin II plays an important role in hypertension-related osteoporosis. Cbfa1 and RANKL, the important factors for maintaining bone homeostasis and key mediators in controlling osteoblast and osteoclast differentiation, are both regulated by cAMP-dependent signaling. Angiotensin II along with factors such as LDL, HDL, NO and homocysteine that are commonly altered both in hypertension and osteoporosis, can down-regulate the expression of Cbfa1 but up-regulate RANKL expression via the cAMP signaling pathway. We thus hypothesized that, by altering the ratio of Cbfa1/RANKL expression via the cAMP-dependent pathway, angiotensin II differently regulates osteoblast and osteoclast differentiation leading to enhanced bone resorption and reduced bone formation. Since ARB can antagonize the adverse effect of angiotensin II on bone by lowering cAMP levels and modifying other downstream targets, including LDL, HDL, NO and Cbfa1/RANKL, we propose the hypothesis that the antagonistic effects of ARB may also be exerted via cAMP signaling pathway. Molecular Diversity Preservation International (MDPI) 2011-06-27 /pmc/articles/PMC3155346/ /pubmed/21845073 http://dx.doi.org/10.3390/ijms12074206 Text en © 2011 by the authors; licensee MDPI, Basel, Switzerland. http://creativecommons.org/licenses/by/3.0 This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
spellingShingle Short Note
Guan, Xiao-Xu
Zhou, Yi
Li, Ji-Yao
Reciprocal Roles of Angiotensin II and Angiotensin II Receptors Blockade (ARB) in Regulating Cbfa1/RANKL via cAMP Signaling Pathway: Possible Mechanism for Hypertension-Related Osteoporosis and Antagonistic Effect of ARB on Hypertension-Related Osteoporosis
title Reciprocal Roles of Angiotensin II and Angiotensin II Receptors Blockade (ARB) in Regulating Cbfa1/RANKL via cAMP Signaling Pathway: Possible Mechanism for Hypertension-Related Osteoporosis and Antagonistic Effect of ARB on Hypertension-Related Osteoporosis
title_full Reciprocal Roles of Angiotensin II and Angiotensin II Receptors Blockade (ARB) in Regulating Cbfa1/RANKL via cAMP Signaling Pathway: Possible Mechanism for Hypertension-Related Osteoporosis and Antagonistic Effect of ARB on Hypertension-Related Osteoporosis
title_fullStr Reciprocal Roles of Angiotensin II and Angiotensin II Receptors Blockade (ARB) in Regulating Cbfa1/RANKL via cAMP Signaling Pathway: Possible Mechanism for Hypertension-Related Osteoporosis and Antagonistic Effect of ARB on Hypertension-Related Osteoporosis
title_full_unstemmed Reciprocal Roles of Angiotensin II and Angiotensin II Receptors Blockade (ARB) in Regulating Cbfa1/RANKL via cAMP Signaling Pathway: Possible Mechanism for Hypertension-Related Osteoporosis and Antagonistic Effect of ARB on Hypertension-Related Osteoporosis
title_short Reciprocal Roles of Angiotensin II and Angiotensin II Receptors Blockade (ARB) in Regulating Cbfa1/RANKL via cAMP Signaling Pathway: Possible Mechanism for Hypertension-Related Osteoporosis and Antagonistic Effect of ARB on Hypertension-Related Osteoporosis
title_sort reciprocal roles of angiotensin ii and angiotensin ii receptors blockade (arb) in regulating cbfa1/rankl via camp signaling pathway: possible mechanism for hypertension-related osteoporosis and antagonistic effect of arb on hypertension-related osteoporosis
topic Short Note
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3155346/
https://www.ncbi.nlm.nih.gov/pubmed/21845073
http://dx.doi.org/10.3390/ijms12074206
work_keys_str_mv AT guanxiaoxu reciprocalrolesofangiotensiniiandangiotensiniireceptorsblockadearbinregulatingcbfa1ranklviacampsignalingpathwaypossiblemechanismforhypertensionrelatedosteoporosisandantagonisticeffectofarbonhypertensionrelatedosteoporosis
AT zhouyi reciprocalrolesofangiotensiniiandangiotensiniireceptorsblockadearbinregulatingcbfa1ranklviacampsignalingpathwaypossiblemechanismforhypertensionrelatedosteoporosisandantagonisticeffectofarbonhypertensionrelatedosteoporosis
AT lijiyao reciprocalrolesofangiotensiniiandangiotensiniireceptorsblockadearbinregulatingcbfa1ranklviacampsignalingpathwaypossiblemechanismforhypertensionrelatedosteoporosisandantagonisticeffectofarbonhypertensionrelatedosteoporosis