Cargando…

Isoniazid Proliposome Powders for Inhalation—Preparation, Characterization and Cell Culture Studies

The aims of this study were to develop proliposome powders containing isoniazid (INH) in a dry powder aerosol form. INH-proliposome powders were prepared by a spray drying method. Proliposome physicochemical properties were determined using cascade impactor, X-ray diffraction and differential scanni...

Descripción completa

Detalles Bibliográficos
Autores principales: Rojanarat, Wipaporn, Changsan, Narumon, Tawithong, Ekawat, Pinsuwan, Sirirat, Chan, Hak-Kim, Srichana, Teerapol
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Molecular Diversity Preservation International (MDPI) 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3155359/
https://www.ncbi.nlm.nih.gov/pubmed/21845086
http://dx.doi.org/10.3390/ijms12074414
Descripción
Sumario:The aims of this study were to develop proliposome powders containing isoniazid (INH) in a dry powder aerosol form. INH-proliposome powders were prepared by a spray drying method. Proliposome physicochemical properties were determined using cascade impactor, X-ray diffraction and differential scanning calorimetry. The toxicity of proliposomes to respiratory-associated cell lines and its potential to provoke immunological responses from alveolar macrophages (AM) were determined. Free INH and INH-proliposome bioactivities were tested in vitro and in AM infected with Mycobacterium bovis (M. bovis). Aerosolization properties of INH-proliposome powders at 60 L/min, the powders showed mass median aerodynamic diameters of 2.99–4.92 μm, with fine particle fractions (aerosolized particles less than 4.4 μm) of 15–35%. Encapsulation of INH was 18–30%. Proliposome formulations containing INH to mannitol ratios of 4:6 and 6:4 exhibited the greatest overlapping peak between the drug and mannitol. INH-proliposomes were evidently nontoxic to respiratory-associated cells, and did not activate AM to produce inflammatory mediators—including interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and nitric oxide—at a toxic level. The efficacy of INH-proliposome against AM infected with M. bovis was significantly higher than that of free INH (p < 0.05). INH-proliposomes are potential candidates for an alternative tuberculosis treatment.