Cargando…

Molecular Basis for Chiral Selection in RNA Aminoacylation

The chiral-selective aminoacylation of an RNA minihelix is a potential progenitor to modern tRNA-based protein synthesis using l-amino acids. This article describes the molecular basis for this chiral selection. The extended double helical form of an RNA minihelix with a CCA triplet (acceptor of an...

Descripción completa

Detalles Bibliográficos
Autor principal: Tamura, Koji
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Molecular Diversity Preservation International (MDPI) 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3155382/
https://www.ncbi.nlm.nih.gov/pubmed/21845109
http://dx.doi.org/10.3390/ijms12074745
Descripción
Sumario:The chiral-selective aminoacylation of an RNA minihelix is a potential progenitor to modern tRNA-based protein synthesis using l-amino acids. This article describes the molecular basis for this chiral selection. The extended double helical form of an RNA minihelix with a CCA triplet (acceptor of an amino acid), an aminoacyl phosphate donor nucleotide (mimic of aminoacyl-AMP), and a bridging nucleotide facilitates chiral-selective aminoacylation. Energetically, the reaction is characterized by a downhill reaction wherein an amino acid migrates from a high-energy acyl phosphate linkage to a lower-energy carboxyl ester linkage. The reaction occurs under the restriction that the nucleophilic attack of O, from 3′-OH in the terminal CCA, to C, from C=O in the acyl phosphate linkage, must occur at a Bürgi-Dunitz angle, which is defined as the O–C=O angle of approximately 105°. The extended double helical form results in a steric hindrance at the side chain of the amino acid leading to chiral preference combined with cation coordinations in the amino acid and the phosphate oxygen. Such a system could have developed into the protein biosynthetic system with an exclusively chiral component (l-amino acids) via (proto) ribosomes.