Cargando…
Bayesian semi-supervised classification of bacterial samples using MLST databases
BACKGROUND: Worldwide effort on sampling and characterization of molecular variation within a large number of human and animal pathogens has lead to the emergence of multi-locus sequence typing (MLST) databases as an important tool for studying the epidemiology and evolution of pathogens. Many of th...
Autores principales: | Cheng, Lu, Connor, Thomas R, Aanensen, David M, Spratt, Brian G, Corander, Jukka |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3155509/ https://www.ncbi.nlm.nih.gov/pubmed/21791094 http://dx.doi.org/10.1186/1471-2105-12-302 |
Ejemplares similares
-
The multilocus sequence typing network: mlst.net
por: Aanensen, David M., et al.
Publicado: (2005) -
Semi-Supervised Bayesian Classification of Materials with Impact-Echo Signals
por: Igual, Jorge, et al.
Publicado: (2015) -
Bayesian estimation of bacterial community composition from 454 sequencing data
por: Cheng, Lu, et al.
Publicado: (2012) -
Bayesian clustering and feature selection for cancer tissue samples
por: Marttinen, Pekka, et al.
Publicado: (2009) -
Hierarchical and Spatially Explicit Clustering of DNA Sequences with BAPS Software
por: Cheng, Lu, et al.
Publicado: (2013)