Cargando…

Mapping Salinity Tolerance during Arabidopsis thaliana Germination and Seedling Growth

To characterize and dissect genetic variation for salinity tolerance, we assessed variation in salinity tolerance during germination and seedling growth for a worldwide sample of Arabidopsis thaliana accessions. By combining QTL mapping, association mapping and expression data, we identified genomic...

Descripción completa

Detalles Bibliográficos
Autores principales: DeRose-Wilson, Leah, Gaut, Brandon S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3155519/
https://www.ncbi.nlm.nih.gov/pubmed/21857956
http://dx.doi.org/10.1371/journal.pone.0022832
Descripción
Sumario:To characterize and dissect genetic variation for salinity tolerance, we assessed variation in salinity tolerance during germination and seedling growth for a worldwide sample of Arabidopsis thaliana accessions. By combining QTL mapping, association mapping and expression data, we identified genomic regions involved in salinity response. Among the worldwide sample, we found germination ability within a moderately saline environment (150 mM NaCl) varied considerable, from >90% among the most tolerant lines to complete inability to germinate among the most susceptible. Our results also demonstrated wide variation in salinity tolerance within A. thaliana RIL populations and identified multiple genomic regions that contribute to this variation. These regions contain known candidate genes, but at least four of the regions contain loci not yet associated with salinity tolerance response phenotypes. Our observations suggest A. thaliana natural variation may be an underutilized resource for investigating salinity stress response.