Cargando…
RNAi Screening for Host Factors Involved in Vaccinia Virus Infection using Drosophila Cells
Viral pathogens represent a significant public health threat; not only can viruses cause natural epidemics of human disease, but their potential use in bioterrorism is also a concern. A better understanding of the cellular factors that impact infection would facilitate the development of much-needed...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MyJove Corporation
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3156023/ https://www.ncbi.nlm.nih.gov/pubmed/20834214 http://dx.doi.org/10.3791/2137 |
_version_ | 1782210173886005248 |
---|---|
author | Moser, Theresa S. Sabin, Leah R. Cherry, Sara |
author_facet | Moser, Theresa S. Sabin, Leah R. Cherry, Sara |
author_sort | Moser, Theresa S. |
collection | PubMed |
description | Viral pathogens represent a significant public health threat; not only can viruses cause natural epidemics of human disease, but their potential use in bioterrorism is also a concern. A better understanding of the cellular factors that impact infection would facilitate the development of much-needed therapeutics. Recent advances in RNA interference (RNAi) technology coupled with complete genome sequencing of several organisms has led to the optimization of genome-wide, cell-based loss-of-function screens. Drosophila cells are particularly amenable to genome-scale screens because of the ease and efficiency of RNAi in this system (1). Importantly, a wide variety of viruses can infect Drosophila cells, including a number of mammalian viruses of medical and agricultural importance (2,3,4). Previous RNAi screens in Drosophila have identified host factors that are required for various steps in virus infection including entry, translation and RNA replication (5). Moreover, many of the cellular factors required for viral replication in Drosophila cell culture are also limiting in human cells infected with these viruses (4,6,7,8, 9). Therefore, the identification of host factors co-opted during viral infection presents novel targets for antiviral therapeutics. Here we present a generalized protocol for a high-throughput RNAi screen to identify cellular factors involved in viral infection, using vaccinia virus as an example. |
format | Online Article Text |
id | pubmed-3156023 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | MyJove Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-31560232011-08-16 RNAi Screening for Host Factors Involved in Vaccinia Virus Infection using Drosophila Cells Moser, Theresa S. Sabin, Leah R. Cherry, Sara J Vis Exp Cellular Biology Viral pathogens represent a significant public health threat; not only can viruses cause natural epidemics of human disease, but their potential use in bioterrorism is also a concern. A better understanding of the cellular factors that impact infection would facilitate the development of much-needed therapeutics. Recent advances in RNA interference (RNAi) technology coupled with complete genome sequencing of several organisms has led to the optimization of genome-wide, cell-based loss-of-function screens. Drosophila cells are particularly amenable to genome-scale screens because of the ease and efficiency of RNAi in this system (1). Importantly, a wide variety of viruses can infect Drosophila cells, including a number of mammalian viruses of medical and agricultural importance (2,3,4). Previous RNAi screens in Drosophila have identified host factors that are required for various steps in virus infection including entry, translation and RNA replication (5). Moreover, many of the cellular factors required for viral replication in Drosophila cell culture are also limiting in human cells infected with these viruses (4,6,7,8, 9). Therefore, the identification of host factors co-opted during viral infection presents novel targets for antiviral therapeutics. Here we present a generalized protocol for a high-throughput RNAi screen to identify cellular factors involved in viral infection, using vaccinia virus as an example. MyJove Corporation 2010-08-25 /pmc/articles/PMC3156023/ /pubmed/20834214 http://dx.doi.org/10.3791/2137 Text en Copyright © 2010, Journal of Visualized Experiments http://creativecommons.org/licenses/by-nc-nd/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visithttp://creativecommons.org/licenses/by-nc-nd/3.0/ |
spellingShingle | Cellular Biology Moser, Theresa S. Sabin, Leah R. Cherry, Sara RNAi Screening for Host Factors Involved in Vaccinia Virus Infection using Drosophila Cells |
title | RNAi Screening for Host Factors Involved in Vaccinia Virus Infection using Drosophila Cells |
title_full | RNAi Screening for Host Factors Involved in Vaccinia Virus Infection using Drosophila Cells |
title_fullStr | RNAi Screening for Host Factors Involved in Vaccinia Virus Infection using Drosophila Cells |
title_full_unstemmed | RNAi Screening for Host Factors Involved in Vaccinia Virus Infection using Drosophila Cells |
title_short | RNAi Screening for Host Factors Involved in Vaccinia Virus Infection using Drosophila Cells |
title_sort | rnai screening for host factors involved in vaccinia virus infection using drosophila cells |
topic | Cellular Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3156023/ https://www.ncbi.nlm.nih.gov/pubmed/20834214 http://dx.doi.org/10.3791/2137 |
work_keys_str_mv | AT mosertheresas rnaiscreeningforhostfactorsinvolvedinvacciniavirusinfectionusingdrosophilacells AT sabinleahr rnaiscreeningforhostfactorsinvolvedinvacciniavirusinfectionusingdrosophilacells AT cherrysara rnaiscreeningforhostfactorsinvolvedinvacciniavirusinfectionusingdrosophilacells |