Cargando…

Dynamic Changes in EPCAM Expression during Spermatogonial Stem Cell Differentiation in the Mouse Testis

BACKGROUND: Spermatogonial stem cells (SSCs) have the unique ability to undergo self-renewal division. However, these cells are morphologically indistinguishable from committed spermatogonia, which have limited mitotic activity. To establish a system for SSC purification, we analyzed the expression...

Descripción completa

Detalles Bibliográficos
Autores principales: Kanatsu-Shinohara, Mito, Takashima, Seiji, Ishii, Kei, Shinohara, Takashi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3156235/
https://www.ncbi.nlm.nih.gov/pubmed/21858196
http://dx.doi.org/10.1371/journal.pone.0023663
Descripción
Sumario:BACKGROUND: Spermatogonial stem cells (SSCs) have the unique ability to undergo self-renewal division. However, these cells are morphologically indistinguishable from committed spermatogonia, which have limited mitotic activity. To establish a system for SSC purification, we analyzed the expression of SSC markers CD9 and epithelial cell adhesion molecule (EPCAM), both of which are also expressed on embryonic stem (ES) cells. We examined the correlation between their expression patterns and SSC activities. METHODOLOGY AND PRINCIPAL FINDINGS: By magnetic cell sorting, we found that EPCAM-selected mouse germ cells have limited clonogenic potential in vitro. Moreover, these cells showed stronger expression of progenitor markers than CD9-selected cells, which are significantly more enriched in SSCs. Fluorescence-activated cell sorting of CD9-selected cells indicated a significantly higher frequency of SSCs among the CD9(+)EPCAM(low/-) population than among the CD9(+)EPCAM(+) population. Overexpression of the active form of EPCAM in germline stem (GS) cell cultures did not significantly influence SSC activity, whereas EPCAM suppression by short hairpin RNA compromised GS cell proliferation and increased the concentration of SSCs, as revealed by germ cell transplantation. CONCLUSIONS/SIGNIFICANCE: These results show that SSCs are the most concentrated in CD9(+)EPCAM(low/-) population and also suggest that EPCAM plays an important role in progenitor cell amplification in the mouse spermatogenic system. The establishment of a method to distinguish progenitor spermatogonia from SSCs will be useful for developing an improved purification strategy for SSCs from testis cells.